• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Comparsion of Multiple Imputation Methods for Missing Covariate Values in Recurrent Event Data

Huo, Zhao January 2015 (has links)
Multiple imputation (MI) is a commonly used approach to impute missing data. This thesis studies missing covariates in recurrent event data, and discusses ways to include the survival outcomes in the imputation model. Some MI methods under consideration are the event indicator D combined with, respectively, the right-censored event times T, the logarithm of T and the cumulative baseline hazard H0(T). After imputation, we can then proceed to the complete data analysis. The Cox proportional hazards (PH) model and the PWP model are chosen as the analysis models, and the coefficient estimates are of substantive interest. A Monte Carlo simulation study is conducted to compare different MI methods, the relative bias and mean square error will be used in the evaluation process. Furthermore, an empirical study based on cardiovascular disease event data which contains missing values will be conducted. Overall, the results show that MI based on the Nelson-Aalen estimate of H0(T) is preferred in most circumstances.

Page generated in 0.0301 seconds