• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diferenciação do padrão de malignidade e benignidade de massas em imagens de mamografias usando padrões locais binários, geoestatística e índice de diversidade / DIFFERENTIATION OF PATTERNS OF MALIGNANCY AND BENIGNITY OF MASSES IN MAMMOGRAPHIC IMAGES USING LOCAL BINARY PATTERNS, GEOSTATISTICS AND DIVERSITY INDEX

ROCHA, Simara Vieira da 22 May 2014 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-14T19:19:25Z No. of bitstreams: 1 SimaraRocha.pdf: 3984461 bytes, checksum: 04243e2b6ab9b63b0b73e436ebc9fc23 (MD5) / Made available in DSpace on 2017-08-14T19:19:25Z (GMT). No. of bitstreams: 1 SimaraRocha.pdf: 3984461 bytes, checksum: 04243e2b6ab9b63b0b73e436ebc9fc23 (MD5) Previous issue date: 2014-05-22 / Breast cancer is the second most frequent type of cancer in the world, being more common among women, and representing 22% of the new cases every year. A precocious diagnosis improves the chances of a successful treatment. Mammography is one of the best ways to precocious detection of non-palpable tumor that could lead to a breast cancer. However, it is well known that this exam's sensibility may vary a lot. This is due to factors such as: the specialist's experience, patient's age and the quality of the exam image. The use of Image Processing and Machine Learning techniques has becoming a strong contribution to the specialist diagnosis task. Thes thesis proposes a methodology to discriminate patterns of malignancy and benignity of masses in mammographic images using texture analysis and machine learning. For this purpose, the methodology combines structural and statistical approaches for the analysis of texture regions extracted from mammograms. Furthermore, this research extends the concept of Diversity Index through the use of species co-occurrence information in order to increase the efficiency of extraction of texture features. The techniques used are Local Binary Pattern, Ripley's K function and diversity indexes (Shannon, Mcintosh, Simpson, Gleason and Menhinick indexes). The extracted texture is classified using a Support Vector Machine into benign and malignant classes. The best results obrained with Ripley's K function were 92,20% of accuracy, 92,96% of sensibility, 91,26% of specificity, 10.63 of likelihood positive ratio, 0,07 of likelihood negative ratio and an area under ROC curve Az of 0,92. / O câncer de mama é o segundo tipo de câncer mais frequente no mundo, sendo mais comum entre as mulheres, respondendo por 22% dos casos novos a cada ano. Quanto mais precocemente for diagnosticado, maiores serão as chances de se realizar um tratamento bem sucedido. A mamogra fia é uma das formas de detectar os tumores não palpáveis que causam câncer de mama. Todavia, sabe-se que a sensibilidade desse exame pode variar bastante, devido a fatores como: a experiência do especialista, a idade do paciente e a qualidade das imagens obtidas no exame. O uso de técnicas de Processamento de Imagens e Aprendizagem de Máquina tem contribuído, cada vez mais, para auxiliar os especialistas na realização de diagnósticos mais precisos. Esta tese propõe uma metodologia para discriminar padrões de malignidade e benignidade de massas em imagens de mamogra fias, utilizando análise de textura e aprendizado de máquina. Para tanto, a metodologia combina as abordagens estrutural e estatística para a análise de textura de regiões extraídas das mamogra fias. Além disso, esta pesquisa amplia o conceito de Índice de Diversidade, através do uso da informação de co-ocorrência de espécies, com o propósito de aumentar a e ficiência da extração de características de textura. Assim, são usadas as técnicas de Local Binary Pattern, Função K de Ripley e os Índices de Shannon, Mcintosh, Simpson, Gleason e de Menhinick. Por fi m, a textura extraída e classi ficada utilizando a Máquina de Vetores de Suporte, visando diferenciar as massas malignas das benignas. O melhor resultado foi obtido usando a função K de Ripley com 92,20% de acurácia, 92,96% de sensibilidade, 91,26% de especi cidade, 10,63 de razão de probabilidade positiva, 0,07% de razão de probabilidade negativa e uma área sob a curva ROC (Az) de 0,92.

Page generated in 0.0498 seconds