• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytics for Software Product Planning

Saha, Shishir Kumar, Mohymen, Mirza January 2013 (has links)
Context. Software product planning involves product lifecycle management, roadmapping, release planning and requirements engineering. Requirements are collected and used together with criteria to define short-term plans, release plans and long-term plans, roadmaps. The different stages of the product lifecycle determine whether a product is mainly evolved, extended, or simply maintained. When eliciting requirements and identifying criteria for software product planning, the product manager is confronted with statements about customer interests that do not correspond to their needs. Analytics summarize, filter, and transform measurements to obtain insights about what happened, how it happened, and why it happened. Analytics have been used for improving usability of software solutions, monitoring reliability of networks and for performance engineering. However, the concept of using analytics to determine the evolution of a software solution is unexplored. In a context where a misunderstanding of users’ need can easily lead the effective product design to failure, the support of analytics for software product planning can contribute to fostering the realization of which features of the product are useful for the users or customers. Objective. In observation of a lack of primary studies, the first step is to apply analytics of software product planning concept in the evolution of software solutions by having an understanding of the product usage measurement. For this reason, this research aims to understand relevant analytics of users’ interaction with SaaS applications. In addition, to identify an effective way to collect right analytics and measure feature usage with respect to page-based analytics and feature-based analytics to provide decision-support for software product planning. Methods. This research combines a literature review of the state-of-the-art to understand the research gap, related works and to find out relevant analytics for software product planning. A market research is conducted to compare the features of different analytics tools to identify an effective way to collect relevant analytics. Hence, a prototype analytics tool is developed to explore the way of measuring feature usage of a SaaS website to provide decision-support for software product planning. Finally, a software simulation is performed to understand the impact of page clutter, erroneous page presentation and feature spread with respect to page-based analytics and feature-based analytics. Results. The literature review reveals the studies which describe the related work on relevant categories of software analytics that are important for measuring software usage. A software-supported approach, developed from the feature comparison results of different analytics tools, ensures an effective way of collecting analytics for product planners. Moreover, the study results can be used to understand the impact of page clutter, erroneous page representation and feature spread with respect to page-based analytics and feature-based analytics. The study reveals that the page clutter, erroneous page presentation and feature spread exaggerate feature usage measurement with the page-based analytics, but not with the feature-based analytics. Conclusions. The research provided a wide set of evidence fostering the understanding of relevant analytics for software product planning. The results revealed the way of measuring the feature usage to SaaS product managers. Furthermore, feature usage measurement of SaaS websites can be recognized, which helps product managers to understand the impact of page clutter, erroneous page presentation and feature spread between page-based and feature-based analytics. Further case study can be performed to evaluate the solution proposals by tailoring the company needs. / +46739480254

Page generated in 0.0591 seconds