• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 14
  • 10
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

FMRI evidence of memory representations of somatosensory stimuli in the human brain

Albanese, Marie-Claire January 2007 (has links)
No description available.
32

Remote automated delivery of mechanical stimuli coupled to brain recordings in behaving mice

Burdge, Justin January 2025 (has links)
The canonical framework for testing pain and mechanical sensitivity in rodents is manual delivery of stimuli to the paw. However, this approach can produce variability in results, requires significant training, and is ergonomically unfavorable to the experimenter. To circumvent limitations in manual delivery of stimuli, we have created a device called the ARM (Automated Reproducible Mechano-stimulator). Built using a series of linear stages, cameras, and stimulus holders, the ARM is more accurate at hitting the desired target, delivers stimuli faster, and decreases variability in delivery of von Frey hair filaments. We demonstrate that the ARM can be combined with traditional measurements of pain behavior and automated machine-learning based pipelines. Importantly, the ARM enables remote testing of mice with experimenters outside the testing room. Using remote testing, we found that mice appeared to habituate more quickly when an experimenter was not present and experimenter presence leads to significant sex-dependent differences in withdrawal behavior. Lastly, to demonstrate the utility of the ARM for neural circuit dissection of pain mechanisms, we combined the ARM with cellular-resolved microendoscopy in the amygdala, linking stimulus, behavior, and brain activity of amygdalar neurons that encode negative pain states. Taken together, the ARM improves speed, accuracy, and robustness of mechanical pain assays and can be combined with automated pain detection systems and brain recordings to map pain sensation and affect.

Page generated in 0.0967 seconds