• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LATE PLEISTOCENE AND HOLOCENE ENVIRONMENTS IN THE GREAT BASIN.

THOMPSON, ROBERT STEPHEN. January 1984 (has links)
Pollen and packrat midden data from the Great Basin indicate that the Pleistocene vegetation of the region was a combination of subalpine conifers on coarse substrates and steppe plants on finer valley bottom soils. While some of the modern dominants of the woodland zone were apparently absent from this region, other woodland and montane plants apparently persisted through the late Pleistocene. Some features of the Pleistocene environment, such as the large pluvial lakes, apparently disappeared by 12,000 yr B.P., while subalpine plants remained well below their modern elevational limits after 11,000 yr B.P. Limber pine and Rocky Mountain juniper apparently did not retreat from the lower mountain slopes until after 6500 yr B.P. Montane and woodland conifers, rare or absent in the region during the Wisconsin, dispersed across the region in the Middle Holocene. Other plants apparently did not reach their modern geographic limits until after 3000 yr B.P. The low elevational occurrences of subalpine species suggest that the late Pleistocene climate of the Great Basin was characterized by summer temperatures that were as much as 10°C cooler than those of today, and that there was some augmentation in the level of mean annual precipitation. The vegetational records provide no evidence of greater than modern levels of summer precipitation. While the persistence of montane plants at relatively low elevations implies cool or moist conditions through the Early Holocene, evidence from lacustrine systems suggests that there was a trend toward increasingly dry conditions during this period. The main period of migrations of woodland plants seems to slightly postdate the warmest and/or driest part of the Holocene, and these migrations may have been related to relatively high levels in summer temperatures, summer precipitation, and/or winter temperatures. Pollen data from a high elevation site, in conjunction with changes in water level in lower elevational lakes, suggest a return to cooler and/or moister conditions after 4000 yr B.P.

Page generated in 0.0594 seconds