• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analýza výkonnosti investičních kovů a mincí / Analysis of performance of investment metals and coins

Kabelková, Zuzana January 2012 (has links)
The thesis "Analysis of Performance of Investment Metals and Coins" deals with the evolution of prices of gold, silver, platinum and palladium. It analyzes factors which have an influence on the prices of these metals. It compares profitability and risk of the investment in gold with the index S&P 500. The strength of dependency is measured by coefficient of correlation between the variables gold and silver/ palladium/ platinum/ brent crude oil/ index S&P 500/prices of the mining company Randgold Resources Ltd. The third part of the thesis deals with the means of investing in the investment metals and it compares the advantages and disadvantages of each option.
2

Crystalline and amorphous metallic membranes for hydrogen separation

January 2015 (has links)
abstract: In the United States, 95% of the industrially produced hydrogen is from natural gas reforming. Membrane-based techniques offer great potential for energy efficient hydrogen separations. Pd77Ag23 is the bench-mark metallic membrane material for hydrogen separation at high temperatures. However, the high cost of palladium limits widespread application. Amorphous metals with lower cost elements are one alternative to replace palladium-based membranes. The overall aim of this thesis is to investigate the potential of binary and ternary amorphous metallic membranes for hydrogen separation. First, as a benchmark, the influence of surface state of Pd77Ag23 crystalline metallic membranes on the hydrogen permeability was investigated. Second, the hydrogen permeability, thermal stability and mechanical properties of Cu-Zr and Ni60Nb35M5 (M=Sn, Ti and Zr) amorphous metallic membranes was evaluated. Different heat treatments were applied to commercial Pd77Ag23 membranes to promote surface segregation. X-ray photoelectron spectroscopy (XPS) analysis indicates that the membrane surface composition changed after heat treatment. The surface area of all membranes increased after heat treatment. The higher the surface Pd/(Pd+Ag) ratio, the higher the hydrogen permeability. Surface carbon removal and surface area increase cannot explain the observed permeability differences. Previous computational modeling predicted that Cu54Zr46 would have high hydrogen permeability. Amorphous metallic Cu-Zr (Zr=37, 54, 60 at. %) membranes were synthesized and investigated. The surface oxides may result in the lower experimental hydrogen permeability lower than that predicted by the simulations. The permeability decrease indicates that the Cu-Zr alloys crystallized in less than two hours during the test (performed at 300 °C) at temperatures below the glass transition temperature. This original experimental results show that thermal stability of amorphous metallic membranes is critical for hydrogen separation applications. The hydrogen permeability of Ni60Nb35M5 (M=Sn, Ti and Zr) amorphous metallic membranes was investigated. Nanoindentation shows that the Young’s modulus and hardness increased after hydrogen permeability test. The structure is maintained amorphous after 24 hours of hydrogen permeability testing at 400°C. The maximum hydrogen permeability of three alloys is 10-10 mol m-1 s-1 Pa-0.5. Though these alloys exhibited a slight hydrogen permeability decreased during the test, the amorphous metallic membranes were thermally stable and did not crystalize. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2015
3

Komoditmé futures na drahé kovy / commodity futures on precious metals

Schwartz, Peter January 2011 (has links)
The aim of the thesis is to clarify the importance of diversifying investment portfolios with the help of precious metals at the present time and to analyze the fluctuation of precious metals market in terms of demand, supply and price developments. The core of the thesis focuses on analysis of the market of precious metals from 1998 to 2011 The used work method is comparison of precious metals between themselves and the world stock indices, the method of analysis in separate calculations of indicators, the method of deduction from the results of calculations.
4

Hydrogen permeation through microfabricated palladium-silver alloy membranes

McLeod, Logan Scott 13 November 2008 (has links)
Energy efficient purification of hydrogen is an important technological challenge with broad applications in the chemical, petrochemical, metallurgical, pharmaceutical, textile and energy industries. Palladium-alloy membranes are particularly suited to this problem due to their high hydrogen permeability, thermal stability, and virtually infinite selectivity. In current systems hydrogen flux is observed to be inversely proportional to membrane thickness which is indicative of the interstitial diffusion mechanism of hydrogen permeation. This observation, along with the high cost of palladium, has motivated continuous efforts to decrease membrane thickness. Theoretical modeling of membrane performance predicts that as membrane thickness continues to decrease, eventually the permeation rate will no longer be limited by diffusion through the bulk Pd but will become limited by desorption from the permeate surface. If it exists, this is a vital transition to pinpoint due to the fact that below this thickness membrane operating conditions will have a drastically different effect on hydrogen permeation behavior and no additional performance enhancements will result from further decreasing thickness. A handful of experimental results in the open literature contradict these modeling predictions. A new model is developed in this work to explain these contradictions by considering the non-ideal behavior of hydrogen solution into metals which has been neglected in previous models. Additionally, it has been demonstrated that hydrogen permeation through bulk Pd depends on membrane microstructure, making deposition conditions and post-deposition thermal treatment important issues for repeatable performance. The interplay of these issues on the performance of ultra-thin, Pd-Ag alloy hydrogen separating membranes is experimentally investigated. It is demonstrated that the hydrogen permeation behavior of sub-micrometer thick Pd-Ag alloy membranes exhibits diffusion-limited behavior in the context of the new model. The microstructure evolution during annealing is characterized and a correlation is drawn with the observed transient hydrogen permeation behavior during initial testing of a new membrane. In addition, two distinct failure modes of the microfabricated membranes are observed and the implications for future Pd-based membrane research are discussed.
5

Cu and Pd complexes of N-heterocyclic carbenes : catalytic applications as single and dual systems

Lesieur, Mathieu January 2015 (has links)
Nowadays, the requirement to design highly valuable compounds is undoubtedly one of the major challenges in the field of organic and organometallic chemistry. The use of the versatile and efficient N-heterocyclic carbenes (NHCs) combined with transition metals represents a key feature in modern organometallic chemistry and homogeneous catalysis. In the course of this thesis, the straightforward design and synthesis of a library of Pd(0) bearing NHC ligands was achieved. Their catalytic performances (Chapter 1) and their phosphorescence properties in solution (Chapter 2) were disclosed. Currently, cross-couplings are some of the most important types of reaction in palladium catalysis. The formation of highly hindered biaryls substrates is one of the main requirements in cross-coupling chemistry. The design and synthesis of a palladium dimer bearing a bulky NHC ligand can fulfil this proposal (Chapter 4). The development of new classes of ligands is a topic of interest. For this reason, normal, abnormal, remote and mesoionic N-heterocyclic carbenes copper complexes were investigated and their reactivity compared in the [3+2] cycloaddition of azides and alkynes (Chapter 7). Air and moisture stable Cu(I)-NHC species have also been compared to their silver analogues for the alkynylation of ketones (Chapter 9). The different reactivity of the two latter organometallic species (Cu and Ag) with ethyldiazoacetate reagent via the formation of carbenes or C-H activated product is presented in Chapter 8. Recently, the development of a bimetallic catalytic system is strongly considered and has high impact. For this reason, two dual catalytic transformations (Pd-NHC and Cu-NHC) were studied for the C-H arylation (Chapter 5) and the synthesis of substituted alkenes products via a relay or cooperative mechanisms (Chapter 6). The isolation of intermediates and mechanistic studies were examined in each of these studies.
6

Spectroscopic studies of metal alloys and semiconductor interfaces

Unsworth, Paul January 2000 (has links)
No description available.
7

Hierarchical Porous Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal-Catalyst Supports

Vijwani, Hema 04 June 2015 (has links)
No description available.

Page generated in 0.0398 seconds