Spelling suggestions: "subject:"palmer amarante"" "subject:"palmer amaranthus""
1 |
Evaluation of non-labeled herbicides in cotton production in MississippiUgljic, Zaim 13 May 2022 (has links) (PDF)
Weed resistance has decreased the number of herbicides that provide effective weed control in cotton. Studies were conducted to determine weed control efficacy and crop safety in cotton with herbicides not currently labeled for use in the crop. Herbicides were applied at two different timings near Starkville and Brooksville, MS. Cotton injury following application of ametryn, bentazon, florpyrauxifen-benzyl, topramezone and tolpyralate at the 3-5 or the 8-10 node growth stage ranged from 24 to 43% and 15 to 51%, respectively, up to 56 days after application. Except for bentazon, applying non-labeled herbicides to cotton at the 3-5 or 8-10 node growth stage decreased seedcotton yield 25 to 44%. Application of bentazon had no effect on yield when applied to cotton at both growth stages and may need to be further evaluated for use in cotton.
|
2 |
Evaluation of Italian ryegrass and Palmer amaranth control in MississippiHughes, Johnson Harris 12 May 2023 (has links) (PDF)
Italian ryegrass is a problematic weed in Mississippi corn production due to the development and proliferation of glyphosate resistance. Studies were conducted to assess Italian ryegrass control prior to planting using herbicides. Effects of fall and spring applied burndown herbicide applications for Italian ryegrass control and subsequent corn grain yield were investigated at the R.R. Foil PSRC in Starkville, MS, at the Coastal Plain Experiment Station in Newton, MS, and the Black Belt Experiment Station in Brooksville, MS on soil textures ranging from sandy loam to silt clay loam. A fall preemergence (PRE) application of S-metolachlor + metribuzin followed by paraquat in the spring provided 99% Italian ryegrass control 28 days after paraquat application. Four spring burndown treatments provided Italian ryegrass control similar to that observed following application of the fall PRE application followed by paraquat in the spring. Applications clethodim + glufosinate + paraquat + dimethenamid-P; clethodim + glufosinate + paraquat + S-metolachlor; clethodim + paraquat + dimethenamid-P; and clethodim + oxyfluorfen + paraquat + S-metolachlor resulted in similar levels of Italian ryegrass control at 96%, 98%, 94%, and 99%, respectively. Corn yield following the fall PRE followed by spring paraquat application was 10,687 kg ha-1. Corn yield following clethodim + paraquat + dimethenamid-P as well as clethodim + oxyfluorfen + paraquat + S-metolachlor applied in the spring resulted in similar corn grain yield to that following the fall PRE followed by spring paraquat application at 9,649 kg ha-1 and 9,567 kg ha-1, respectively. Spring burndown herbicide treatments could be used to control Italian ryegrass while producing similar corn yield to the standard fall herbicide followed by paraquat application in the spring.
|
3 |
Postemergence and Residual Control of Glyphosate-Resistant Palmer Amaranth (Amaranthus Palmeri) with DicambaEdwards, Clifford Blake 17 August 2013 (has links)
Onarm research was conducted in 2011 and 2012 to determine the postemergence and residual control by dicamba of glyphosate-resistant (GR) Palmer amaranth (Amaranthus palmeri S. Wats.). Preemergence dicamba at 0, 0.28, 0.56, and 1.1 kg ae ha-1 and 0.07 kg ae ha-1 flumioxazin was applied at 30, 15 and 0 days prior to planting. Postemergence dicamba at 0.28, 0.56, and 1.1 kg ae ha-1 with and without 0.84 kg ae ha-1 glyphosate was applied to 5, 10 and 15 cm Palmer amaranth. In addition, a greenhouse experiment was conducted in 2012 to evaluate and confirm the optimum rate for control of Palmer amaranth with a new formulation of dicamba (BAS 18322H). In the greenhouse, dicamba at 0.14, 0.28, 0.56, 1.1, and 2.2 kg ae ha-1 was applied to 5, 10, and 15 cm Palmer amaranth.
|
4 |
Integration of Cereal Cover Crops and Synthetic Auxin Herbicides into Rowcrop Production and Weed ManagementEdwards, Ryan James 14 August 2015 (has links)
The occurrence of herbicide resistance weeds across the southern United States has been increasing. Research is needed to develop alternative control measures, while supporting sound agronomic practices. Greenhouse and field studies were conducted to evaluate cereal cover cropping techniques along with novel herbicides to determine their value for Mississippi growers. Field studies were performed to determine which combination of cereal cover crops (cereal rye, wheat and oats) and residual herbicides (S-metolachlor + metribuzin, S-metolachlor + fomesafen, pendimethalin, flumioxazin, sulfentrazone + metribuzin and pyroxasulfone + flumioxazin) would maximize soybean yield in the presence of weeds. Cereal cover crop termination methods were evaluated and a partial budget was generated to examine the total costs of growing soybeans utilizing cereal cover crops and residual herbicides. Residual herbicide applications averaged across all cereal cover crops controlled Amaranthus spp. greater than 89% by 28 DAT. Control by the cover crops alone was 67% for of Amaranthus spp. In all cereal species tested, cutting the cover crops 10 cm above the soil and leaving the residue reduced weed numbers compared to other termination methods. However, high production and implementation costs may prevent widespread adoption of cereal cover crops and residual herbicides in Mississippi. Aminocyclopyrachlor (AMCP) is a synthetic auxin herbicide currently labeled for non-crop use, but has characteristics which may make it useful as a preplant burndown (PPB) herbicide. The application of AMCP prior to planting of corn and cotton were evaluated and carryover effects to soybean were also evaluated. Tank mix combinations of AMCP with residual herbicides (rimsulfuron, flumioxazin, pyroxasulfone, pyroxasulfone+ flumioxazin and atrazine) were also evaluated. A rate titration of AMCP and its impacts on crop species were evaluated in the greenhouse. Corn showed tolerance to AMCP except at 0.28 kg ai ha-1 applied prior to planting. Cotton was sensitive to AMCP as rate increased closer to the planting date, but response depended upon soil texture. AMCP impacts on soybean showed greater sensitivity (90% injury) then all other species evaluated. Due to potential impacts on soybean and cotton, AMCP is not a potential PPB for use in Mississippi.
|
5 |
Biology and Control of Eastern Black Nightshade, Palmer Amaranth, and Common Pokeweed, in No-Till Systems on the Eastern Shore Regions of Virginia and MarylandVollmer, Kurt Matthew 05 December 2014 (has links)
Eastern black nightshade, Palmer amaranth, and common pokeweed are three hard to control weed species on the Eastern Shore regions of Virginia and Maryland. Herbicide resistance and lack of herbicide efficacy further complicate the job of controlling these weeds. Studies were conducted on each of these weeds in order to determine herbicide efficacy and potential herbicide resistance. In addition, the translocation and metabolism of 14C-glyphosate was studied in common pokeweed. This research identified a population of eastern black nightshade that was differentially sensitive to families of ALS-inhibiting herbicides, with tolerance to members of the sulfonylurea family, but controlled with herbicides of the imidazolinone family. A population of Palmer amaranth was found to be glyphosate-resistant, but herbicide programs were identified that could control this biotype in soybean and corn systems. Experiments on the fate of glyphosate in common pokeweed indicated that glyphosate does not readily translocate from treated foliage to other plant parts, which may contribute to shoot regeneration from taproots following glyphosate treatment. Taken together, this research highlights the important weed control issues, including resistant and perennial weeds in agronomic crops that have arisen in Eastern Shore agriculture. This work will help growers to better assess their particular control issues, and take appropriate steps to mitigate any problems. / Ph. D.
|
6 |
New Herbicide Strategies for Weed Management in Pumpkin and Soybean and Potato Vine DesiccationFerebee, James Harrison IV 04 January 2019 (has links)
Weed control and desiccation are routinely executed with herbicides. Potato vine desiccation facilitates harvest, improves skin set, and regulates tuber size. Saflufenacil, glufosinate, saflufenacil plus glufosinate, and carfentrazone plus glufosinate were compared to diquat applied at 43, 31, and 17% B potatoes; similar vine desiccation (14 days after treatment), skin set, and yield were noted amongst treatments. Residual herbicides are routinely used for weed control in pumpkin. Fluridone and acetochlor formulations applied preemergence were evaluated in direct-seeded pumpkin compared to other labeled herbicides. Fluridone resulted in total crop loss following heavy rainfall immediately after planting; less rainfall resulted in transient injury. Acetochlor formulations resulted in significant pumpkin injury (34 to 39%) 14 days after planting. S-metolachlor controlled weeds similar to acetochlor without significant injury. Palmer amaranth has developed resistance to six different herbicide modes of action. The weed grows rapidly and is best controlled <10 cm in height. To control glyphosate and ALS- resistant biotypes, fomesafen plus dicamba were applied at first postemergence (POST) to small Palmer amaranth (<5 cm, 0 d) and at simulated delays of 7, 14, 21, and 28 d. All plots received lactofen plus dicamba 14 days after first POST. Palmer amaranth control 14 days after first POST was 100% when delayed 0 or 7 d and 62% at the 28 day delay; control increased to 88% following lactofen plus dicamba applied second POST. Yield was significantly reduced when first POST was delayed 28 days at one location. / Master of Science in Life Sciences / Herbicides effectively control weeds by either applying them to the soil prior to emergence or applying them to foliage. Herbicides are used for desiccation of potato vines to facilitate harvest, improve skin set, and regulate tuber size. Potatoes with tougher skin have a longer shelf life and are more resistant to disease. Potato grade classifications include size chef, A, and B potatoes. Size B potatoes hold the greatest value for redskinned potatoes. Experiments were conducted in Virginia to evaluate saflufenacil, glufosinate, saflufenacil plus glufosinate, and carfentrazone plus glufosinate as desiccants compared to diquat applied at 43, 31, and 17% B potatoes. All desiccants resulted in similar vine desiccation 14 days after treatment, skin set, and yield. This research demonstrates that glufosinate and saflufenacil are effective alternatives to diquat for potato vine desiccation; however, further research is needed to evaluate the safety of saflufenacil applied to potatoes prior to harvest. Soil applied herbicides are commonly used in pumpkin production. Fluridone and two acetochlor formulations, herbicides that effectively control troublesome weeds in other crops, were evaluated for pumpkin production in addition to fomesafen, ethalfluralin, clomazone, halosulfuron, and S-metolachlor. Fluridone and acetochlor formulations resulted in significant pumpkin injury early in the growing season and total crop loss was observed by fluridone in 2018. Fomesafen significantly reduced pumpkin iv stand and yield. S-metolachlor, a member of the same chemical family as acetochlor, provided similar weed control without significant pumpkin injury. This research demonstrates that fluridone and acetochlor formulations are poor candidates for pumpkin production. Palmer amaranth is a troublesome weed in soybean that grows rapidly and is resistant to many herbicides. Palmer amaranth is best controlled at a height of 10 cm or less, but timely applications are not always feasible. Fomesafen plus dicamba were applied to small Palmer amaranth (<5 cm, 0 day) and at simulated delays of 7, 14, 21, and 28 days. All treatments received lactofen plus dicamba 14 days after the initial postemergence. Palmer amaranth control 14 days after first postemergence was 100% when application was delayed 0 or 7 day whereas Palmer amaranth control was 62% when first postemergence was delayed 28 days. Lactofen plus dicamba applied second postemergence increased control to 88% when the first postemergence was delayed 28 days. Compared to nontreated plots, Palmer amaranth biomass was reduced 99% by all treatments. This research demonstrates that fomesafen plus dicamba followed by lacofen plus dicamba can be effective for rescue control of Palmer amaranth.
|
7 |
Avoiding Protoporphyrinogen Oxidase Inhibiting Herbicide Selection Pressure on Common Ragweed and Palmer amaranth in SoybeanBlake, Hunter B. 31 January 2019 (has links)
Palmer amaranth (Amaranthus palmeri) and common ragweed (Ambrosia artemisiifolia) can cause detrimental soybean yield loss. Due to widespread resistance to glyphosate and ALS-inhibiting herbicides, growers rely on protoporphyrinogen oxidase inhibiting herbicides (PPO) such as flumioxazin applied preemergence (PRE) and fomesafen postemergence (POST) to control both weeds. Experiments were conducted with the overarching goal of reducing PPO selection pressure for Palmer amaranth and common ragweed. Flumioxazin alone PRE controlled Palmer amaranth near 100%. However, sulfentrazone combined with pyroxasulfone or pendimethalin provided similar control to flumioxazin. Acetochlor and linuron controlled common ragweed <74%, yet controlled Palmer amaranth >96%. Glufosinate applied POST controlled Palmer amaranth and common ragweed 74-100%, regardless of PRE treatment. Flumioxazin PRE followed by fomesafen POST controlled common ragweed well; however, several non-PPO herbicide treatments or programs with only 1 PPO-inhibiting herbicide provided similar common ragweed control as the 2 PPO system (flumioxazin followed by fomesafen). Treatments consisting of a PRE and POST herbicide controlled Palmer amaranth at least 80% and common ragweed 95%. To reduce PPO selection pressure, soybean producers growing glufosinate-resistant soybean may use flumioxazin PRE followed by glufosinate POST whereas non-glufosinate-resistant soybean growers should reduce PPO herbicide use by using a non-PPO herbicide PRE. Alternatively, these producers can effectively reduce PPO selection pressure by implementing residual combinations of a PPO-inhibiting herbicide + non-PPO with spectrums of weed control that overlap at either Palmer amaranth or common ragweed. / Master of Science in Life Sciences / Soybean producers planted 35.4 million hectares in the US during 2018. Palmer amaranth (Amaranthus palmeri) and common ragweed (Ambrosia artemisiifolia) are both common and problematic in soybean production. The introduction of a glyphosate-resistant soybean cultivars coupled with glyphosate allowed soybean producers to easily control these weeds along with many other broadleaf and grass weeds. However, over reliance on glyphosate selected for biotypes of common ragweed and Palmer amaranth resistant to the herbicide. In response, soybean producers have reverted to preemergence (PRE) herbicides and alternative modes of action postemergence (POST) to control these herbicide-resistant weeds. One such herbicide mode of action is inhibition of protoporphyrinogen oxidase (PPO). Flumioxazin and fomesafen are both PPO-inhibiting herbicides and have been widely used in soybean, however increasing reliance on PPOs has selected for resistant common ragweed and Palmer amaranth biotypes. This research focused on reducing risk of PPO-inhibiting herbicide resistance development (“selection pressure”) by finding alternatives to or combinations with PPOinhibiting herbicides that would effectively control both weeds and thus preserve effectiveness of a valuable herbicide group. Of PRE herbicides applied alone, flumioxazin was the only treatment to control Palmer amaranth >79% 14 DA-PRE at Painter 2017. However, combination of PRE herbicides such as sulfentrazone or metribuzin in combination with pyroxasulfone, and pendimethalin + sulfentrazone, all controlled Palmer amaranth well. While metribuzin and pendimethalin alone did not provide as much control, a POST application of glufosinate coupled with these residual herbicides adequately controlled Palmer amaranth. Soybean producers can effectively control Palmer amaranth with a non-PPO PRE herbicide followed by glufosinate postemergence (POST) or residual combinations of a PPO + non-PPO while reducing risk of herbicide resistance development. Several PRE herbicide treatments adequately controlled common ragweed. During 2017, residual herbicides that controlled common ragweed at least 90% included flumioxazin, flumioxazin + clomazone, linuron, or metribuzin, fomesafen + linuron, and linuron + clomazone. All treatments controlled common ragweed greater than 94% during 2018, except metribuzin, linuron, and clomazone, which controlled the weed 75, 86, and 90%, respectively. Fomesafen alone or in combination with metribuzin controlled common ragweed 80 to 84%. Regardless of PRE, glufosinate POST controlled common ragweed 99% 56 and 70 days after planting (DAP). In fields infested with common ragweed yet to develop PPO resistance, growers should use a non-PPO herbicide in combination with flumioxazin PRE. Additionally, tank mixtures of effective MOAs PRE followed by glufosinate rather than a PPO POST may reduce herbicide selection pressure. The final study set out to determine which was more critical to controlling herbicideresistant Palmer amaranth and common ragweed in soybean, a PPO-inhibiting herbicide applied PRE or POST. Flumioxazin applied PRE controlled both weeds almost completely. Acetochlor and linuron did not control common ragweed as well, but controlled Palmer amaranth >96%. Both metribuzin and clomazone were weaker on common ragweed and Palmer amaranth. However, all PRE herbicide treatments followed by glufosinate or fomesafen controlled Palmer amaranth and common ragweed at least 80 and 95%, respectively. To reduce PPO selection pressure, soybean producers growing glufosinate-resistant soybean may use flumioxazin PRE followed by glufosinate POST whereas non-glufosinate-resistant growers should reduce PPO herbicide use by using a non-PPO herbicide PRE. Alternatively, these producers can effectively reduce PPO selection pressure by implementing residual combinations of a PPO-inhibiting herbicide + non-PPO with spectrums of weed control that overlap at either Palmer amaranth or common ragweed. Results from these experiments suggest PPO-inhibiting herbicides are critical for common ragweed and Palmer amaranth control. Previous research has shown effective tank mixtures with various effective MOAs has reduced the risk of herbicide resistance development. Protoporphyrinogen oxidase herbicides should be used sparingly and in combination with effective non-PPO herbicides to reduce selection pressure. / Soybean producers planted 35.4 million hectares in the US during 2018. Palmer amaranth (Amaranthus palmeri) and common ragweed (Ambrosia artemisiifolia) are both common and problematic in soybean production. The introduction of a glyphosate-resistant soybean cultivars coupled with glyphosate allowed soybean producers to easily control these weeds along with many other broadleaf and grass weeds. However, over reliance on glyphosate selected for biotypes of common ragweed and Palmer amaranth resistant to the herbicide. In response, soybean producers have reverted to preemergence (PRE) herbicides and alternative modes of action postemergence (POST) to control these herbicide-resistant weeds. One such herbicide mode of action is inhibition of protoporphyrinogen oxidase (PPO). Flumioxazin and fomesafen are both PPO-inhibiting herbicides and have been widely used in soybean, however increasing reliance on PPOs has selected for resistant common ragweed and Palmer amaranth biotypes. This research focused on reducing risk of PPO-inhibiting herbicide resistance development (“selection pressure”) by finding alternatives to or combinations with PPOinhibiting herbicides that would effectively control both weeds and thus preserve effectiveness of a valuable herbicide group. Of PRE herbicides applied alone, flumioxazin was the only treatment to control Palmer amaranth >79% 14 DA-PRE at Painter 2017. However, combination of PRE herbicides such as sulfentrazone or metribuzin in combination with pyroxasulfone, and pendimethalin + sulfentrazone, all controlled Palmer amaranth well. While metribuzin and pendimethalin alone did not provide as much control, a POST application of glufosinate coupled with these residual herbicides adequately controlled Palmer amaranth. Soybean producers can effectively control Palmer amaranth with a non-PPO PRE herbicide followed by glufosinate postemergence (POST) or residual combinations of a PPO + non-PPO while reducing risk of herbicide resistance development. Several PRE herbicide treatments adequately controlled common ragweed. During 2017, residual herbicides that controlled common ragweed at least 90% included flumioxazin, flumioxazin + clomazone, linuron, or metribuzin, fomesafen + linuron, and linuron + clomazone. All treatments controlled common ragweed greater than 94% during 2018, except metribuzin, linuron, and clomazone, which controlled the weed 75, 86, and 90%, respectively. Fomesafen alone or in combination with metribuzin controlled common ragweed 80 to 84%. Regardless of PRE, glufosinate POST controlled common ragweed 99% 56 and 70 days after planting (DAP). In fields infested with common ragweed yet to develop PPO resistance, growers should use a non-PPO herbicide in combination with flumioxazin PRE. Additionally, tank mixtures of effective MOAs PRE followed by glufosinate rather than a PPO POST may reduce herbicide selection pressure. The final study set out to determine which was more critical to controlling herbicideresistant Palmer amaranth and common ragweed in soybean, a PPO-inhibiting herbicide applied PRE or POST. Flumioxazin applied PRE controlled both weeds almost completely. Acetochlor and linuron did not control common ragweed as well, but controlled Palmer amaranth >96%. Both metribuzin and clomazone were weaker on common ragweed and Palmer amaranth. However, all PRE herbicide treatments followed by glufosinate or fomesafen controlled Palmer amaranth and common ragweed at least 80 and 95%, respectively. To reduce PPO selection pressure, soybean producers growing glufosinate-resistant soybean may use flumioxazin PRE followed by glufosinate POST whereas non-glufosinate-resistant growers should reduce PPO herbicide use by using a non-PPO herbicide PRE. Alternatively, these producers can effectively reduce PPO selection pressure by implementing residual combinations of a PPO-inhibiting herbicide + non-PPO with spectrums of weed control that overlap at either Palmer amaranth or common ragweed. Results from these experiments suggest PPO-inhibiting herbicides are critical for common ragweed and Palmer amaranth control. Previous research has shown effective tank mixtures with various effective MOAs has reduced the risk of herbicide resistance development. Protoporphyrinogen oxidase herbicides should be used sparingly and in combination with effective non-PPO herbicides to reduce selection pressure.
|
8 |
COMPARISON OF SOIL-APPLIED AND POSTEMERGENCE HERBICIDES WITH MULTIPLE SITES OF HERBICIDAL ACTIVITY ON TWO POPULATIONS OF HERBICIDE-RESISTANT PALMER AMARANTH IN KENTUCKYFleitz, Nicholas J. 01 January 2018 (has links)
With the introduction of herbicide resistant Palmer amaranth into Kentucky during the past 10 years there has been an increasing concern for effective control measures in grain production. Field trials were performed in 2016 and 2017 near Barlow and Paris, KY to determine efficacy of chemical control programs targeting herbicide resistant Palmer amaranth. Percent visual control, effects on plant density and plant height were measured in 2016 to determine treatment effectiveness. Treatments containing four different sites of herbicide activity achieved an average of 98% control. Treatments containing only 3, 2 or 1 site of activity only achieved 64%, 45% and 33% control, respectively. Within the long-chain fatty acid inhibitors herbicides in this study, pre-emergent applied pyroxasulfone provided greater control than S-metolachlor or acetochlor. Pyroxasulfone also provided greater control than the photosystem II herbicides atrazine and metribuzin. In 2017 PRE treatments consisting of three-way mixtures of flumioxazin + pyroxasulfone + chlorimuron or S-metolachlor + metribuzin + fomesafen followed by a POST herbicide treatment provided > 90% suppression of Palmer amaranth 4 weeks after trial initiation. Post-emergence treatments containing glyphosate + dicamba or glyphosate + 2,4-D following a soil-applied pre-emergent treatment achieved the most effective season-long control of Palmer amaranth.
|
9 |
Integrating cover crops and herbicides for horseweed and Palmer amaranth management in no-till soybeanMcCall, Chelsea Marie January 1900 (has links)
Master of Science / Department of Agronomy / Johanna A. Dille / Palmer amaranth and horseweed are problematic weeds in no-till soybeans in Kansas. Integrating cover crops and herbicide programs could suppress weed populations. To determine the emergence pattern and survival of horseweed, a study was conducted across six locations in eastern KS in 2014-2015 and 2015-2016. Horseweed seedlings and leaf number per seedling were recorded at two-week intervals. Cumulative GDDs required to reach 50% horseweed emergence increased from north to south. Horseweed survival ranged from 4 to 90%, and majority of horseweed emerged in the fall. Field studies were conducted to determine effects of cover crops and herbicide programs on Palmer amaranth near Manhattan, KS in 2014-2015 and 2015-2016. Five cover crop treatments included no cover, fall-sown winter wheat, spring-sown oat, pea, and mixture of oat and pea. Cover crops were terminated in May with glyphosate and 2,4-D alone or with residual herbicides of flumioxazin and pyroxasulfone. By 10 weeks after termination in 2014-2015, Palmer amaranth biomass and density, averaged across cover crops. was 95 and 69% less with residual herbicides than without, respectively, and Palmer amaranth biomass was 98% less in winter wheat and 91% less in spring oat, averaged across termination methods, compared to no cover. Time to 50% Palmer amaranth emergence was delayed with winter wheat, spring oat, and spring oat/pea mix without residual herbicide. Soybean yields were greater with residual herbicide and greater with winter wheat or spring oat cover crop in 2014-2015. A field study was conducted to determine suppression effects of cover crop and herbicide programs on horseweed and Palmer amaranth near Manhattan, KS in 2015-2016. Three fall treatments included fall-sown rye, a residual herbicide tank mix of glyphosate, dicamba, chlorimuron-ethyl, tribenuron-methyl, and AMS, and no fall application. Four spring treatments included no spring application or three herbicide tank mixes: glyphosate, dicamba, and AMS alone or with flumioxazin and pyroxasulfone as early preplant, or as split applied with 2/3 preplant and 1/3 at soybean planting. Similar levels of horseweed suppression were observed when some control measure was used in fall or spring. Fall rye completely suppressed horseweed while the fall herbicide suppressed biomass by 93% and density by 86% compared to no fall application. Palmer amaranth suppression was observed when a spring herbicide application was used. In rye, total weed biomass was reduced by 97% or more across all spring treatments. Total weed biomass was reduced with a spring herbicide was used. Soybean yields were least when no herbicide treatment was used in the spring. An integrated program of fall cover crops or herbicide applications together with spring herbicide applications maintained soybean yields.
|
10 |
Corn and Palmer amaranth interactions in dryland and irrigated environmentsRule, Dwain Michael January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Johanna A. Dille / Palmer amaranth is a competitive weed and has caused variable corn yield losses in diverse environments of Kansas. The objectives of this study were to 1) determine corn and Palmer amaranth growth, development, and grain (seed) production, 2) determine soil water content throughout the growing season, and 3) evaluate the performance of the modified ALMANAC model for simulating monoculture corn yield and corn yield loss from Palmer amaranth competition when corn and Palmer amaranth were grown alone or in competition under dryland and irrigated environments. For the first objective, field experiments were conducted in 2005 and 2006 with whole-plots of dryland and furrow irrigation arranged in a side-by-side design. Within each soil water environment, sub-plot treatments were monoculture Palmer amaranth at one plant m-1 of row, and corn with zero, one, and four Palmer amaranth plants m-1 of row. Corn height, leaf number, LAI, and total plant dry weight were reduced with increasing water stress and were reduced further in the presence of Palmer amaranth. Corn yield losses were similar with increasing Palmer amaranth density across soil water environments in each year, except for 2006 dryland corn. Palmer amaranth growth and development were negatively impacted by corn interference and weed density. For the second objective, Time Domain Reflectometry measurements documented seasonal trends of volumetric soil water content at the 0 to 15 and 0 to 30 cm soil profile depths for treatments in dryland and irrigated environments each year. The soil water depletion rate increased as water received prior to a drying period increased at the 0 to 30 cm soil depth in the dryland and irrigated environments. For the third objective, the modified ALMANAC model was parameterized based on monoculture corn and Palmer amaranth growth data. The model underestimated monoculture corn yield but overestimated corn yield with Palmer amaranth competition. The model performance was not consistent when comparing simulation results to dryland and irrigated experiments conducted across Kansas. Overall, the experiment provided an improved understanding of corn yield loss risks associated with water management and Palmer amaranth competition.
|
Page generated in 0.0681 seconds