Spelling suggestions: "subject:"pansharpening"" "subject:"pansherpening""
1 |
Fusion of hyperspectral and panchromatic images with very high spatial resolution / Fusion d'images panchromatiques et hyperspectrales à très haute résolution spatialeLoncan, Laëtitia 26 October 2016 (has links)
Les méthodes standard de pansharpening visent à fusionner une image panchromatique avec une image multispectrale afin de générer une image possédant la haute résolution spatiale de la première et la haute résolution spectrale de la dernière. Durant la dernière décennie, beaucoup de méthodes de pansharpening utilisant des images multispectrales furent créées. Avec la disponibilité croissante d’images hyperspectrales, ces méthodes s’étendent maintenant au pansharpening hyperspectral, c’est-à-dire à la fusion d’une image panchromatique possédant une très bonne résolution spatiale avec une image hyperspectrale possédant une résolution spatiale plus faible. Toutefois les méthodes de pansharpening hyperspectrale issues de l’état de l’art ignorent souvent le problème des pixels mixtes. Le but de ses méthodes est de préserver l’information spectrale tout en améliorant l’information spatiale. Dans cette thèse, dans une première partie, nous présentons et analysons les méthodes de l’état de l’art afin de les analyser pour connaitre leurs performances et leurs limitations. Dans une seconde partie, nous présentons une approche qui s’occupe du cas des pixels mixtes en intégrant une étape pré-fusion pour les démélanger. Cette méthode améliore les résultats en ajoutant de l’information spectrale qui n’est pas présente dans l’image hyperspectrale à cause des pixels mixtes. Les performances de notre méthode sont évaluées sur différents jeux de données possédant des résolutions spatiales et spectrales différentes correspondant à des environnements différents. Notre méthode sera évaluée en comparaison avec les méthodes de l’état de l’art à une échelle globale et locale. / Standard pansharpening aims at fusing a panchromatic image with a multispectral image in order to synthesize an image with the high spatial resolution of the former and the spectral resolution of the latter. In the last decade many pansharpening algorithms have been presented in the literature using multispectral data. With the increasing availability of hyperspectral systems, these methods are now extending to hyperspectral pansharpening, i.e. the fusion of a panchromatic image with a high spatial resolution and a hyperspectral image with a coarser spatial resolution. However, state of the art hyperspectral pansharpening methods usually do not consider the problem of the mixed pixels. Their goal is solely to preserve the spectral information while adding spatial information. In this thesis, in a first part, we present the state-of-the-art methods and analysed them to identified there performances and limitations. In a second part, we present an approach to actually deal with mixed pixels as a pre-processing step before performing the fusion. This improves the result by adding missing spectral information that is not directly available in the hyperspectral image because of the mixed pixels. The performances of our proposed approach are assessed on different real data sets, with different spectral and spatial resolutions and corresponding to different contexts. They are compared qualitatively and quantitatively with state of the art methods, both at a global and a local scale.
|
2 |
Multiresolution based, multisensor, multispectral image fusionPradhan, Pushkar S 06 August 2005 (has links)
Spaceborne sensors, which collect imagery of the Earth in various spectral bands, are limited by the data transmission rates. As a result the multispectral bands are transmitted at a lower resolution and only the panchromatic band is transmitted at its full resolution. The information contained in the multispectral bands is an invaluable tool for land use mapping, urban feature extraction, etc. However, the limited spatial resolution reduces the appeal and value of this information. Pan sharpening techniques enhance the spatial resolution of the multispectral imagery by extracting the high spatial resolution of the panchromatic band and adding it to the multispectral images. There are many different pan sharpening methods available like the ones based on the Intensity-Hue-Saturation and the Principal Components Analysis transformation. But these methods cause heavy spectral distortion of the multispectral images. This is a drawback if the pan sharpened images are to be used for classification based applications. In recent years, multiresolution based techniques have received a lot of attention since they preserve the spectral fidelity in the pan sharpened images. Many variations of the multiresolution based techniques exist. They differ based on the transform used to extract the high spatial resolution information from the images and the rules used to synthesize the pan sharpened image. The superiority of many of the techniques has been demonstrated by comparing them with fairly simple techniques like the Intensity-Hue-Saturation or the Principal Components Analysis. Therefore there is much uncertainty in the pan sharpening community as to which technique is the best at preserving the spectral fidelity. This research investigates these variations in order to find an answer to this question. An important parameter of the multiresolution based methods is the number of decomposition levels to be applied. It is found that the number of decomposition levels affects both the spatial and spectral quality of the pan sharpened images. The minimum number of decomposition levels required to fuse the multispectral and panchromatic images was determined in this study for image pairs with different resolution ratios and recommendations are made accordingly.
|
Page generated in 0.0624 seconds