Spelling suggestions: "subject:"panel ultimate atrength"" "subject:"panel ultimate 1strength""
1 |
Consequences of Simultaneous Local and Overall Buckling in Stiffened PanelsGhosh, Biswarup 25 April 2003 (has links)
In this thesis improved expressions for elastic local plate buckling and overall panel buckling of uniaxially compressed T-stiffened panels are developed and validated with 55 ABAQUS eigenvalue buckling analyses of a wide range of typical panel geometries. These two expressions are equated to derive a new expression for the rigidity ratio (EIx/Db)CO that uniquely identifies ¡°crossover¡± panels ¨C those for which local and overall buckling stresses are the same. The new expression for (EIx/Db)CO is also validated using the 55 FE models. Earlier work by (Chen, 2003) had produced a new step-by-step beam-column method for predicting stiffener-induced compressive collapse of stiffened panels. An alternative approach is to use orthotropic plate theory. As part of the validation of the new beam-column method, ABAQUS elasto-plastic Riks ultimate strength analyses were made for 107 stiffened panels ¨C the 55 crossover panels and 52 others. The beam-column and orthotropic approaches were also used. A surprising result was that the orthotropic approach has a large error for crossover panels whereas the beam-column method does not. Some possible reasons for this are suggested. Collapse patterns for the crossover panels are studied and classified from von Mises stress distribution at collapse. The collapse mechanism and load-deflection diagrams suggest stable inelastic post collapse behavior for most panels and an abrupt drop in load carrying capacity in only nine of the 55. / Master of Science
|
2 |
Validation of the ULSAP Closed-Form Method for Ultimate Strength Analysis of Cross-Stiffened PanelsDippold, Samuel Mark 15 September 2005 (has links)
This thesis presents the results of 67 ABAQUS elasto-plastic Riks ultimate strength analyses of cross-stiffened panels. These panels cover a wide range of typical geometries. Uniaxial compression is applied to the panels, and in some cases combined with lateral pressure. For eight of the panels full-scale experimental results are available, and these verified the accuracy of the ABAQUS results. The 67 ABAQUS results were then compared to the ultimate strength predictions from the computer program ULSAP. In all but 10 cases the ULSAP predicted strength is within 30% of the ABAQUS value, and in all but 4 cases the predicted failure mode also agrees with that of ABAQUS. In one case the ULSAP predicted ultimate strength is 51% below the experimental value, and so this case is studied in detail. The discrepancy is found to be caused by the method which ULSAP uses for panels that experience overall collapse initiated by beam-column-type failure. The beam-column method program ULTBEAM is used to predict the ultimate strength of the 61 panels that ULSAP predicts to fail due to overall collapse of the stiffeners and plating which may or may not be triggered by yielding of the plate-stiffener combination at the midspan (Mode III or III-1). ULTBEAM is found to give more accurate results than ULSAP for Mode III or III-1 failure. Future work is recommended to incorporate ULTBEAM into ULSAP to predict the ultimate strength of panels that fail in Mode III or III-1. / Master of Science
|
Page generated in 0.0688 seconds