• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation and parameter estimation of spectrophotometric instruments  / Simulering och parameterestimering av spektrofotometriska instrument

Avramidis, Stefanos January 2009 (has links)
<p>The paper and the graphics industries use two instruments with different optical geometry (d/0 and 45/0) to measure the quality of paper prints. The instruments have been reported to yield incompatible measurements and even rank samples differently in some cases, causing communication problems between these sectors of industry.A preliminary investigation concluded that the inter-instrument difference could be significantly influenced by external factors (background, calibration, heterogeneity of the medium). A simple methodology for eliminating these external factors and thereby minimizing the instrument differences has been derived. The measurements showed that, when the external factors are eliminated, and there is no fluorescence or gloss influence, the inter-instrument difference becomes small, depends on the instrument geometry, and varies systematically with the scattering, absorption, and transmittance properties of the sample.A detailed description of the impact of the geometry on the results has been presented regarding a large sample range. Simulations with the radiative transfer model DORT2002 showed that the instruments measurements follow the physical radiative transfer model except in cases of samples with extreme properties. The conclusion is that the physical explanation of the geometrical inter-instrument differences is based on the different degree of light permeation from the two geometries, which eventually results in a different degree of influence from near-surface bulk scattering. It was also shown that the d/0 instrument fulfils the assumptions of a diffuse field of reflected light from the medium only for samples that resemble the perfect diffuser but it yields an anisotropic field of reflected light when there is significant absorption or transmittance. In the latter case, the 45/0 proves to be less anisotropic than the d/0.In the process, the computational performance of the DORT2002 has been significantly improved. After the modification of the DORT2002 in order to include the 45/0 geometry, the Gauss-Newton optimization algorithm for the solution of the inverse problem was qualified as the most appropriate one, after testing different optimization methods for performance, stability and accuracy. Finally, a new homotopic initial-value algorithm for routine tasks (spectral calculations) was introduced, which resulted in a further three-fold speedup of the whole algorithm.The paper and the graphics industries use two instruments with different optical geometry (d/0 and 45/0) to measure the quality of paper prints. The instruments have been reported to yield incompatible measurements and even rank samples differently in some cases, causing communication problems between these sectors of industry.A preliminary investigation concluded that the inter-instrument difference could be significantly influenced by external factors (background, calibration, heterogeneity of the medium). A simple methodology for eliminating these external factors and thereby minimizing the instrument differences has been derived. The measurements showed that, when the external factors are eliminated, and there is no fluorescence or gloss influence, the inter-instrument difference becomes small, depends on the instrument geometry, and varies systematically with the scattering, absorption, and transmittance properties of the sample.A detailed description of the impact of the geometry on the results has been presented regarding a large sample range. Simulations with the radiative transfer model DORT2002 showed that the instruments measurements follow the physical radiative transfer model except in cases of samples with extreme properties. The conclusion is that the physical explanation of the geometrical inter-instrument differences is based on the different degree of light permeation from the two geometries, which eventually results in a different degree of influence from near-surface bulk scattering. It was also shown that the d/0 instrument fulfils the assumptions of a diffuse field of reflected light from the medium only for samples that resemble the perfect diffuser but it yields an anisotropic field of reflected light when there is significant absorption or transmittance. In the latter case, the 45/0 proves to be less anisotropic than the d/0.In the process, the computational performance of the DORT2002 has been significantly improved. After the modification of the DORT2002 in order to include the 45/0 geometry, the Gauss-Newton optimization algorithm for the solution of the inverse problem was qualified as the most appropriate one, after testing different optimization methods for performance, stability and accuracy. Finally, a new homotopic initial-value algorithm for routine tasks (spectral calculations) was introduced, which resulted in a further three-fold speedup of the whole algorithm.</p> / QC 20100707 / PaperOpt, Paper Optics and Colour
2

Simulation and parameter estimation of spectrophotometric instruments  / Simulering och parameterestimering av spektrofotometriska instrument

Avramidis, Stefanos January 2009 (has links)
The paper and the graphics industries use two instruments with different optical geometry (d/0 and 45/0) to measure the quality of paper prints. The instruments have been reported to yield incompatible measurements and even rank samples differently in some cases, causing communication problems between these sectors of industry.A preliminary investigation concluded that the inter-instrument difference could be significantly influenced by external factors (background, calibration, heterogeneity of the medium). A simple methodology for eliminating these external factors and thereby minimizing the instrument differences has been derived. The measurements showed that, when the external factors are eliminated, and there is no fluorescence or gloss influence, the inter-instrument difference becomes small, depends on the instrument geometry, and varies systematically with the scattering, absorption, and transmittance properties of the sample.A detailed description of the impact of the geometry on the results has been presented regarding a large sample range. Simulations with the radiative transfer model DORT2002 showed that the instruments measurements follow the physical radiative transfer model except in cases of samples with extreme properties. The conclusion is that the physical explanation of the geometrical inter-instrument differences is based on the different degree of light permeation from the two geometries, which eventually results in a different degree of influence from near-surface bulk scattering. It was also shown that the d/0 instrument fulfils the assumptions of a diffuse field of reflected light from the medium only for samples that resemble the perfect diffuser but it yields an anisotropic field of reflected light when there is significant absorption or transmittance. In the latter case, the 45/0 proves to be less anisotropic than the d/0.In the process, the computational performance of the DORT2002 has been significantly improved. After the modification of the DORT2002 in order to include the 45/0 geometry, the Gauss-Newton optimization algorithm for the solution of the inverse problem was qualified as the most appropriate one, after testing different optimization methods for performance, stability and accuracy. Finally, a new homotopic initial-value algorithm for routine tasks (spectral calculations) was introduced, which resulted in a further three-fold speedup of the whole algorithm.The paper and the graphics industries use two instruments with different optical geometry (d/0 and 45/0) to measure the quality of paper prints. The instruments have been reported to yield incompatible measurements and even rank samples differently in some cases, causing communication problems between these sectors of industry.A preliminary investigation concluded that the inter-instrument difference could be significantly influenced by external factors (background, calibration, heterogeneity of the medium). A simple methodology for eliminating these external factors and thereby minimizing the instrument differences has been derived. The measurements showed that, when the external factors are eliminated, and there is no fluorescence or gloss influence, the inter-instrument difference becomes small, depends on the instrument geometry, and varies systematically with the scattering, absorption, and transmittance properties of the sample.A detailed description of the impact of the geometry on the results has been presented regarding a large sample range. Simulations with the radiative transfer model DORT2002 showed that the instruments measurements follow the physical radiative transfer model except in cases of samples with extreme properties. The conclusion is that the physical explanation of the geometrical inter-instrument differences is based on the different degree of light permeation from the two geometries, which eventually results in a different degree of influence from near-surface bulk scattering. It was also shown that the d/0 instrument fulfils the assumptions of a diffuse field of reflected light from the medium only for samples that resemble the perfect diffuser but it yields an anisotropic field of reflected light when there is significant absorption or transmittance. In the latter case, the 45/0 proves to be less anisotropic than the d/0.In the process, the computational performance of the DORT2002 has been significantly improved. After the modification of the DORT2002 in order to include the 45/0 geometry, the Gauss-Newton optimization algorithm for the solution of the inverse problem was qualified as the most appropriate one, after testing different optimization methods for performance, stability and accuracy. Finally, a new homotopic initial-value algorithm for routine tasks (spectral calculations) was introduced, which resulted in a further three-fold speedup of the whole algorithm. / QC 20100707 / PaperOpt, Paper Optics and Colour
3

Whiteness and Fluorescence in Layered Paper and Board : Perception and Optical Modelling

Gustafsson Coppel, Ludovic January 2012 (has links)
This thesis is about modelling and predicting the perceived whiteness of plain paper from the paper composition, including fluorescent whitening agents. This involves psychophysical modelling of perceived whiteness from measurable light reflectance properties, and physical modelling of light scattering and fluorescence from the paper composition. Existing models are first tested and improvements are suggested and evaluated. A colour appearance model including simultaneous contrast effects (CIECAM02-m2), earlier tested on coloured surfaces, is successfully applied to perceived whiteness. An extension of the Kubelka-Munk light scattering model including fluorescence for turbid media of finite thickness is successfully tested for the first time on real papers. It is extended to layered constructions with different layer optical properties and modified to enable parameter estimation with conventional d/0° spectrophotometers used in the paper industry. Lateral light scattering is studied to enable simulating the spatially resolved radiance factor from layered constructions, and angle-resolved radiance factor simulations are performed to study angular variation of whiteness. It is shown that the linear CIE whiteness equation fails to predict the perceived whiteness of highly white papers with distinct bluish tint. This equation is applicable only in a defined region of the colour space, a condition that is shown to be not fulfilled by many commercial office papers, although they appear white to most observers. The proposed non-linear whiteness equations give to these papers a whiteness value that correlates with their perceived whiteness, while application of the CIE whiteness equation outside its region of validity overestimates perceived whiteness. It is shown that the fluorescence efficiency of FWA is essentially dependent only on the ability of the FWA to absorb light in its absorption band. Increased FWA concentration leads accordingly to increased whiteness. However, since FWA absorbs light in the violet-blue region of the electromagnetic spectrum, the reflectance factor decreases in that region with increasing FWA amount. This violet-blue absorption tends to give a greener shade to the paper and explains most of the observed greening and whiteness saturation at larger FWA concentrations. A red-ward shift of the quantum efficiency is observed with increasing FWA concentration, but this is shown to have a negligible effect on the whiteness value. The results are directly applicable to industrial applications for better instrumental measurement of whiteness and thereby optimising the use of FWA with the goal to improve the perceived whiteness. / PaperOpt

Page generated in 0.0385 seconds