Spelling suggestions: "subject:"parabolic mixed point"" "subject:"parabolica mixed point""
1 |
Classification analytique des points fixes paraboliques de germes antiholomorphes et de leurs déploiementsGodin, Jonathan 12 1900 (has links)
On s’intéresse à la dynamique dans un voisinage d’un point fixe d’une fonction antiholomorphe d’une variable. Dans un premier temps, on cherche à décrire et à comprendre l’espace des orbites dans un voisinage d’un point fixe multiple, appelé point parabolique, et à explorer les propriétés géométriques préservées par les changements de coordonnée. En particulier, on résout le problème de classification analytique des points paraboliques. Résoudre ce problème consiste à définir un module de classification complet qui permet de déterminer si deux germes de difféomorphismes antiholomorphes sont analytiquement conjugués dans un voisinage de leur point fixe parabolique. On examine également les applications du module à différents problèmes : i) extraction d’une racine n-ième antiholomorphe, ii) existence d’une courbe analytique invariante sous la dynamique d’un germe antiholomorphe parabolique et iii) centralisateur d’un germe antiholomorphe parabolique. Dans un second temps, on étudie les déploiements génériques d’un point fixe double, soit un point parabolique de codimension 1. Les questions sont de nature similaire, à savoir comprendre l’espace des orbites et les propriétés géométriques des déploiements. Afin de classifier les déploiements génériques, on déploie le module de classification pour les points paraboliques, ce qui permet d’obtenir des conditions nécessaires et suffisantes pour déterminer lorsque deux déploiements génériques sont équivalents. / We are interested in the dynamics in a neighbourhood of a fixed point of an antiholomorphic function of one variable. First, we want to describe and understand the space of orbits in a neighbourhood of a multiple fixed point, called a parabolic point, and to explore the geometric properties preserved by changes of coordinate. In particular, we solve the problem of analytical classification of parabolic fixed points. To solve this problem, we define a complete modulus of classification that allows to determine whether two germs of antiholomorphic diffeomorphisms are analytically conjugate in a neighbourhood of their parabolic fixed point. We also consider the applications of the modulus to different problems: i) extraction of an n-th antiholomorphic root, ii) existence of an invariant real analytical curve under the dynamics of a parabolic antiholomorphic germ, and iii) centraliser of a parabolic antiholomorphic germ. In the second part, we study generic unfoldings of a double fixed point, i.e. a parabolic point of codimension 1. The questions are similar in nature, namely to understand the space of orbits and the geometric properties of unfoldings. In order to classify generic unfoldings, the modulus of classification of the parabolic point is unfolded, thus providing the necessary and sufficient conditions to determine when two generic unfoldings are equivalent.
|
Page generated in 0.0683 seconds