• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • 1
  • Tagged with
  • 14
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sex determination in southern flounder, Paralichthys lethostigma from the Texas Gulf Coast and implications of climate change

Montalvo, Avier José 16 February 2011 (has links)
In marine flatfish of the genus Paralichthys, temperature plays a large role in sex determination. Thus, global climate change could have significant effects on southern flounder (Paralichthys lethostigma), a commercially and recreationally important flatfish whose populations have steadily declined in Texas in the last 25 years. The most susceptible areas to global climate change are shallow water environments, particularly estuaries, which serve as essential nursery habitats for juvenile southern flounder. While in the estuaries, juveniles develop, and sex is determined. Juvenile southern flounder possess genotypic sex determination; however, the sex of females is highly influenced by temperature and can result in sex reversal. The temperature-sensitive enzyme complex responsible for estrogen biosynthesis in vertebrates is aromatase cytochrome P450 (P450arom), a critical component in ovarian differentiation that can be used to measure presumptive males and females exposed to a gradient of temperatures. This research identifies that sex is influenced by temperature between 35 and 65 mm total length (TL) and establishes that increases in temperature from 18 °C during this size range produce increasingly male skewed sex ratios in southern flounder from Texas. The findings presented here are critical for optimizing production of females in culture and for developing stock enhancement programs of southern flounder in Texas. / text
12

Spatial and Temporal Shifts in Estuarine Nursery Habitats Used by Juvenile Southern Flounder (Paralichthys lethostigma)

Furey, Nathaniel 2012 August 1900 (has links)
Southern flounder (Parlichthys lethostigma) is a recreationally and commercially important flatfish species found in the Gulf of Mexico, and recent analyses indicate that the northern Gulf of Mexico population is in decline. For proper management, knowledge of habitats used throughout the juvenile stage is needed. The aim of the current study is to examine habitat use of young-of-year (YOY) southern flounder in the Galveston Bay complex using habitat distribution models and acoustic telemetry. A set of habitat distribution models examined how habitat use changes during the first year of life. In addition, southern flounder were tagged with acoustic telemetry transmitters and monitored with a novel receiver array that allows for measurements of fine-scale movements. These movements were compared to habitat maps to examine habitat selection. Habitat distribution models determined that habitat requirements for southern flounder change with ontogeny and season. Newly settled southern flounder were most influenced by physicochemical parameters and the presence of seagrass beds. YOY southern flounder, however, showed increased occurrence at freshwater inlets during summer and fall months, and occurrence decreased at tidal inlets during the fall. Predictions of habitat suitability across the Galveston Bay complex indicate that the factors influencing occurrence of southern flounder change with season, ontogeny, and availability of suitable habitats. With acoustic telemetry, it was apparent that habitat use by southern flounder was nonrandom and influenced by benthic and other physicochemical conditions. Habitat analyses indicated that southern flounder used sand habitats more frequently than seagrass, oyster reef, or salt marsh habitats. Telemetry results also indicated that depth and water temperature were important determinants of habitat suitability for YOY southern flounder, with individuals preferring deeper and cooler regions of the water column in Christmas Bay. Both model and telemetry analyses indicate that habitat use by YOY southern flounder is dynamic across multiple spatial and temporal scales, with distributions and movements influenced strongly by ontogenetic changes in habitat associations, temporal and spatial variability in physicochemical conditions, and tidal cycles.
13

Production economics of summer flounder Paralichthys dentatus aquaculture in a recirculating system /

Yates, J. Kevin. January 2004 (has links) (PDF)
Thesis (M.S.)--University of North Carolina at Wilmington, 2004. / Includes bibliographical references (leaves : 53-58).
14

Design and Model-based Approaches for Estimating Abundance of American Horseshoe Crab

Wong, Chad Christopher 24 January 2024 (has links)
The American horseshoe crab (HSC), Limulus polyphemus, is one of four species of horseshoe crabs found throughout the world, and the only one found in North America. It is an economically and ecologically important species throughout its native range from Maine to the Yucatan Peninsula. Harvested for fertilizer and livestock feed in the 19th century, the species is now harvested as bait for whelk and eel fisheries, and for their blood by the biomedical industry. The Atlantic States Marine Fisheries Commission (ASMFC) started to formally manage HSC in 1998 with its Interstate Fisheries Management Plan (IFMP). Unique emphasis and harvest limits have been placed on the Delaware Bay stock, as it is commercially exploited and a critical food source for the threatened red knot, Calidris canutus rufa. Previously, estimates of relative and total abundance of HSC in the Delaware Bay area were based on a design-based approach using a stratified random sampling design. In Chapter 1 of this work, I developed hurdle models for each of the six HSC demographic groups to standardize catch-per-unit-effort (CPUE) and estimate relative abundance using a model-based approach. It was determined that while the two approaches resulted in mostly convergent estimates of relative abundance, external factors such as month, time-of-day, and average depth have major effects on the observed CPUE of all demographic groups. Chapter 2 involved the development of hurdle models for the three species of bycatch frequently caught in our trawls, channeled whelk (Busysotypus canaliculatus), knobbed whelk (Busycon carica), and summer flounder (Paralichthys dentatus). It was found that channeled whelk relative abundance has been at a historical low since 2016, while summer flounder has been at a consistent high. Recent estimates of knobbed whelk relative abundance have been less variable than previously seen, with estimates since 2016 being similar to those seen before 2012. These results provide the first estimates for whelk population trends in the mid-Atlantic region and add to the growing knowledge of summer flounder relative abundance in the area. In Chapter 3, I applied the hurdle models developed in Chapter 1 to estimate the total abundance of HSC in the Delaware Bay area. For this work, I developed two spatio-temporal variograms to estimate bottom temperature and bottom salinity at unmeasured cells per month in the time series. The results showed that night estimates of total abundance were consistently higher than daytime estimates, and estimates from September or November resulted in the highest estimated catch for all demographic groups. The results suggest that when comparing September model-based estimates at night to those of the design-based approach, nearly a third of all previous design-based estimates significantly underestimated the total abundance of HSC in the Delaware Bay area. This result suggests that the ASMFC can recommend increased harvest limits for mature individuals if that action aligns with the goals of their adaptive resource management (ARM) framework. / Master of Science / The American horseshoe crab (HSC), Limulus polyphemus, is one of four species of horseshoe crabs found throughout the world, and the only one found in North America. It is an economically and ecologically important species throughout its native range from Maine to the Yucatan Peninsula. Harvested by the millions in the 19th century, the species is still harvested as bait for whelk and eel fisheries, and for their blood by the biomedical industry, on the order of hundreds of thousands. Formal management of HSC by the Atlantic States Marine Fisheries Commission (ASMFC) began in 1998, and allowable catch and landings have decreased since 1999. A strong focus has been placed on the Delaware Bay population, as it is the center of HSC abundance and provides a critical food source for the threatened red knot, Calidris canutus rufa, while also being commercially exploited. To effectively manage the species, it is important to accurately estimate relative and total abundance so that proper harvest limits can be set. Previously, estimates of relative and total abundance of HSC in the Delaware Bay area were based on a design-based approach using a stratified random sampling design. In Chapter 1 of this work, I developed hurdle models (a generalized linear model that models the probability of observations and the observed positive counts using two separate regression models that are then combined) for each of the six HSC demographic groups to remove the effect of external factors (year, latitude, longitude, depth [inshore/offshore], topography, average trawl depth, time-of-day, month, bottom temperature, bottom salinity, and distance from shore) on our observed catch-per-unit-effort (CPUE) and estimate relative abundance using a model-based approach. It was determined that while the two approaches resulted in mostly convergent estimates of relative abundance, factors like month, time-of-day, and average depth had major effects on the observed CPUE of all demographic groups. Chapter 2 involved developing similar hurdle models for three species of bycatch frequently caught in our trawls, i.e., channeled whelk (Busysotypus canaliculatus), knobbed whelk (Busycon carica), and summer flounder (Paralichthys dentatus). It was found that channeled whelk relative abundance has been at a historical low since 2016, while summer flounder has been at a consistent high. Recent estimates of knobbed whelk relative abundance have been less variable than previously seen, with estimates since 2016 being similar to those seen before 2012. These results provide the first estimates for whelk population trends in the mid-Atlantic region and add to the growing knowledge of summer flounder relative abundance in the area. In Chapter 3, I applied the hurdle models developed in Chapter 1 to estimate the total abundance of HSC in the Delaware Bay area. To do this, the bottom temperature and salinity had to be estimated for each geographic cell. This was accomplished by developing two spatio-temporal variograms which allowed me to estimate either variable at an unmeasured point and time based on its spatial and temporal distance from a measured value in a process known as spatio-temporal kriging. The results showed that night estimates of total abundance were consistently higher than daytime estimates and that estimates from September or November resulted in the highest estimated total abundance for all demographic groups. The results suggest that when using September model-based estimates at night to compare against the design-based approach, nearly a third of all previous design-based estimates significantly underestimated the total abundance of HSC in the Delaware Bay area. This outcome could justify ASMFC increasing recommended harvest limits for mature individuals if that action aligns with the goals of their adaptive resource management (ARM) framework.

Page generated in 0.0383 seconds