• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Novel Low Inertia Exoskeleton Device for Characterizing the Neuromuscular Properties of the Human Shoulder

January 2020 (has links)
abstract: The human shoulder plays an integral role in upper limb motor function. As the basis of arm motion, its performance is vital to the accomplishment of daily tasks. Impaired motor control, as a result of stroke or other disease, can cause errors in shoulder position to accumulate and propagate to the entire arm. This is why it is a highlight of concern for clinicians and why it is an important point of study. One of the primary causes of impaired shoulder motor control is abnormal mechanical joint impedance, which can be modeled as a 2nd order system consisting of mass, spring and damper. Quantifying shoulder stiffness and damping between healthy and impaired subjects could help improve our collective understanding of how many different neuromuscular diseases impact arm performance. This improved understanding could even lead to better rehabilitation protocols for conditions such as stroke through better identification and targeting of damping dependent spasticity and stiffness dependent hypertonicity. Despite its importance, there is a fundamental knowledge gap in the understanding of shoulder impedance, mainly due to a lack of appropriate characterization tools. Therefore, in order to better quantify shoulder stiffness and damping, a novel low-inertia shoulder exoskeleton is introduced in this work. The device was developed using a newly pioneered parallel actuated robot architecture specifically designed to interface with complex biological joints like the shoulder, hip, wrist and ankle. In addition to presenting the kinematics and dynamics of the shoulder exoskeleton, a series of validation experiments are performed on a human shoulder mock-up to quantify its ability to estimate known impedance properties. Finally, some preliminary data from human experiments is provided to demonstrate the device’s ability to collect the measurements needed to estimate shoulder stiffness and damping while worn by a subject. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2020
2

Design of Linear Series Elastic Actuators for a Humanoid Robot

Knabe, Coleman Scott 23 June 2015 (has links)
Series elastic actuators (SEAs) have numerous benefits for force controlled robotic applications. This thesis presents the design and assembly of a set of compact, lightweight, low-friction linear SEAs for the legs of the Tactical Hazardous Operations Robot (THOR). The THOR SEA pairs a ball screw driven linear actuator with a configurable titanium leaf spring. A removable pivot changes the effective cantilever length, setting the compliance to either 372 or 655 kN/m. Unlike typical SEAs which measure actuator load through spring deflection, an in-line axial load cell directly measures actuator forces up to the commandable peak of 2225 N. The continuous operating range of the actuator is computed, along with an evaluation of the range of motion and torque profiles for the parallel hip and ankle joints. With a focus on a large power-to-weight ratio and small packaging size, the THOR SEAs are well-suited for accurate torque control of the parallel joints on the robot. Linearly actuated joints, especially ones driven through a crank arm, tend to suffer from a loss of mechanical advantage toward the ends of its limited range of motion. To augment the range of motion and mechanical advantage profile on THOR, an inverted Hoeken's linkage straight line mechanism is paired with a linear SEA at the hip and knee pitch joints on the robot. The resulting linkage assembly is capable of delivering nearly constant peak torque of 115 Nm across its 150 degree range of motion. The mechanical advantage profile of the Hoeken's linkage actuator is computed for the nominal case, as well the deviation resulting from maximum deflection of the titanium beam. / Master of Science

Page generated in 0.0945 seconds