• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Graphical Representation of Exposed Parallelism

Rodriguez Villamizar, Gustavo Enrique 01 July 2017 (has links)
Modern-day microprocessors are measured in part by their parallel performance. Parallelizing sequential programs is a complex task, requiring data dependence analysis of the program constructs. Researchers in the field of parallel optimization are working on shifting the optimization effort from the programmer to the compiler. The goal of this work is for the compiler to visually expose the parallel characteristics of the program to researchers as well as programmers for a better understanding of the parallel properties of their programs. In order to do that we developed Exposed Parallelism Visualization (EPV), a statically-generated graphical tool that builds a parallel task graph of source code after it has been converted to the LLVM compiler frameworkq s Intermediate Representation (IR). The goal is for this visual representation of IR to provide new insights about the parallel properties of the program without having to execute the program. This will help researchers and programmers to understand if and where parallelism exists in the program at compile time. With this understanding, researchers will be able to more easily develop compiler algorithms that identify parallelism and improve program performance, and programmers will easily identify parallelizable sections of code that can be executed in multiple cores or accelerators such as GPUs or FPGAs. To the best of our knowledge, EPV is the first static visualization tool made for the identification of parallelism.
2

HPSM: uma API em linguagem c++ para programas com laços paralelos com suporte a multi-CPUs e Multi-GPUs / HPSM: a c++ API for parallel loops programs Supporting multi-CPUs and multi-GPUs

Di Domenico, Daniel 21 December 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Parallel architectures has been ubiquitous for some time now. However, the word ubiquitous can’t be applied to parallel programs, because there is a greater complexity to code them comparing to ordinary programs. This fact is aggravated when the programming also involves accelerators, like GPUs, which demand the use of tools with scpecific resources. Considering this setting, there are programming models that make easier the codification of parallel applications to explore accelerators, nevertheless, we don’t know APIs that allow implementing programs with parallel loops that can be processed simultaneously by multiple CPUs and multiple GPUs. This works presents a high-level C++ API called HPSM aiming to make easier and more efficient the codification of parallel programs intended to explore multi-CPU and multi-GPU architectures. Following this idea, the desire is to improve performance through the sum of resources. HPSM uses parallel loops and reductions implemented by three parallel back-ends, being Serial, OpenMP and StarPU. Our hypothesis estimates that scientific applications can explore heterogeneous processing in multi-CPU and multi-GPU to achieve a better performance than exploring just accelerators. Comparisons with other parallel programming interfaces demonstrated that HPSM can reduce a multi-CPU and multi-GPU code in more than 50%. The use of the new API can introduce impact to program performance, where experiments showed a variable overhead for each application, that can achieve a maximum value of 16,4%. The experimental results confirmed the hypothesis, because the N-Body, Hotspot e CFD applications achieved gains using just CPUs and just GPUs, as well as overcame the performance achieved by just accelerators (GPUs) through the combination of multi-CPU and multi-GPU. / Arquiteturas paralelas são consideradas ubíquas atualmente. No entanto, o mesmo termo não pode ser aplicado aos programas paralelos, pois existe uma complexidade maior para codificálos em relação aos programas convencionais. Este fato é agravado quando a programação envolve também aceleradores, como GPUs, que demandam o uso de ferramentas com recursos muito específicos. Neste cenário, apesar de existirem modelos de programação que facilitam a codificação de aplicações paralelas para explorar aceleradores, desconhece-se a existência de APIs que permitam a construção de programas com laços paralelos que possam ser processados simultaneamente em múltiplas CPUs e múltiplas GPUs. Este trabalho apresenta uma API C++ de alto nível, denominada HPSM, visando facilitar e tornar mais eficiente a codificação de programas paralelos voltados a explorar arquiteturas com multi-CPU e multi-GPU. Seguindo esta ideia, deseja-se ganhar desempenho através da soma dos recursos. A HPSM é baseada em laços e reduções paralelas implementadas por meio de três diferentes back-ends paralelos, sendo Serial, OpenMP e StarPU. A hipótese deste estudo é que aplicações científicas podem valer-se do processamento heterogêneo em multi-CPU e multi-GPU para alcançar um desempenho superior em relação ao uso de apenas aceleradores. Comparações com outras interfaces de programação paralela demonstraram que o uso da HPSM pode reduzir em mais de 50% o tamanho de um programa multi-CPU e multi-GPU. O uso da nova API pode trazer impacto no desempenho do programa, sendo que experimentos demonstraram que seu sobrecusto é variável de acordo com a aplicação, chegando até 16,4%. Os resultados experimentais confirmaram a hipótese, pois as aplicações N-Body, Hotspot e CFD, além de alcançarem ganhos ao utilizar somente CPUs e somente GPUs, também superaram o desempenho obtido por somente aceleradores (GPUs) através da combinação de multi-CPU e multi-GPU.

Page generated in 0.0474 seconds