• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Optimization-Based Parallel Particle Filter for Multitarget Tracking

Sutharsan, S. 09 1900 (has links)
<p> Particle filters are being used in a number of state estimation applications because of their capability to effectively solve nonlinear and non-Gaussian problems. However, they have high computational requirements and this becomes even more so in the case of multitarget tracking, where data association is the bottleneck. In order to perform data association and estimation jointly, typically an augmented state vector, whose dimensions depend on the number of targets, is used in particle filters. As the number of targets increases, the corresponding computational load increases exponentially. In this case, parallelization is a possibility for achieving real-time feasibility in large-scale multitarget tracking applications. In this paper, we present an optimization-based scheduling algorithm that minimizes the total computation time for the bus-connected heterogeneous primary-secondary architecture. This scheduler is capable of selecting the optimal number of processors from a large pool of secondary processors and mapping the particles among the selected ones. A new distributed resampling algorithm suitable for parallel computing is also proposed. Furthermore, a less communication intensive parallel implementation of the particle filter without sacrificing tracking accuracy using an efficient load balancing technique, in which optimal particle migration among secondary processors is ensured, is presented. Simulation results demonstrate the tracking effectiveness of the new parallel particle filter and the speedup achieved using parallelization.</p> / Thesis / Master of Applied Science (MASc)
2

Computational methods for Bayesian inference in macroeconomic models

Strid, Ingvar January 2010 (has links)
The New Macroeconometrics may succinctly be described as the application of Bayesian analysis to the class of macroeconomic models called Dynamic Stochastic General Equilibrium (DSGE) models. A prominent local example from this research area is the development and estimation of the RAMSES model, the main macroeconomic model in use at Sveriges Riksbank.   Bayesian estimation of DSGE models is often computationally demanding. In this thesis fast algorithms for Bayesian inference are developed and tested in the context of the state space model framework implied by DSGE models. The algorithms discussed in the thesis deal with evaluation of the DSGE model likelihood function and sampling from the posterior distribution. Block Kalman filter algorithms are suggested for likelihood evaluation in large linearised DSGE models. Parallel particle filter algorithms are presented for likelihood evaluation in nonlinearly approximated DSGE models. Prefetching random walk Metropolis algorithms and adaptive hybrid sampling algorithms are suggested for posterior sampling. The generality of the algorithms, however, suggest that they should be of interest also outside the realm of macroeconometrics.

Page generated in 0.0689 seconds