Spelling suggestions: "subject:"parallelograms"" "subject:"parallellograms""
1 |
Sbírka úloh o čtyřúhelnících / Collection of exercises about quadranglesNohál, Pavel January 2013 (has links)
Title: The Collection of Exercises About Qaudrangles Author: Bc. Pavel Nohál Department: Department of Mathematics Education Supervisor: doc. RNDr. Jarmila Robová, CSc., Department of Mathematics Education Abstract: The master thesis is focused on exercises regarding qaudrangles. This gives a chance to pupils of primary schools and lower secondary schools to repeat and practice math curriculum with a view of further study, but also develop pupils' common sense and logical thinking. The quadrangles are being encountered by us every day and therefore the exercises in this area are largely connected with the practical life. As not many current Collections on the market are dealing exclusively with quadrangles, author would like to fill this vacancy by this thesis. Keywords: Quadrilaterals and their division Parallelograms and trapezoids Circumference and area Tops, sides and interior angles
|
2 |
Um estudo sobre propriedades do paralelogramo envolvendo o processo de argumentação e provaDuarte, Valdenir Francisco 10 December 2007 (has links)
Made available in DSpace on 2016-04-27T16:58:34Z (GMT). No. of bitstreams: 1
Valdenir Francisco Duarte.pdf: 2275326 bytes, checksum: 64718a9487076854ec47a0150adb082d (MD5)
Previous issue date: 2007-12-10 / This work, carried out as part of the research project AprovaME developed at
the Pontifical Catholic University of São Paulo, has as its aim to verify the
advances and the difficulties presented by students in the elaboration of proofs
related to the properties of parallelograms. The research procedures adopted
during the study drew from the theories of de Parzysz (2001) concerning formal
and empirical proofs; the four dimensions involved in the construction of
geometrical thinking perception, representations, construction and conception
presented by Machado (1995); the representation of information from the
point of view of Duval (1995); and the considerations related to logical
sequences in Duval e Egret (1989).
Using the methodology Didactical Engineering, a sequence of activities was
designed and carried out with two groups of students. One group was
composed of 8th grade Middle School students and the second of students from
the first year of High School. The activity sequence was planned to involve
students in, first, the construction of hypotheses and theses on the basis of
empirical explorations and, in term, organise, in a deductive form, their
propositions in order to elaborate proofs of various properties of parallelograms.
The analysis of the students productions illustrates difficulties experienced
in the process of argumentation and proof that can be grouped into three
categories: difficulties related to the elaboration of proofs, difficulties associated
with the acceptance of empirical arguments and difficulties linked to problems in
interpreting the problems proposed. The analysis also suggested that as the
activity sequence progressed, certain advances in relation to these difficulties
occurred. Some students began to carry out calculations without needing to
consider particular cases, others presented complete formal proofs and even
those who produced incomplete proofs made use of logical reasoning in
attempts to express valid arguments. In addition, a positive factor related to the
activity sequence was the engagement of students in the analysis of proofs
constructed by others / O presente trabalho, vinculado ao projeto AprovaME, desenvolvido na
Pontifícia Universidade Católica de São Paulo, tem por objetivo verificar os
avanços e as dificuldades apresentadas pelos alunos na elaboração de provas
sobre as propriedades dos paralelogramos.
Os procedimentos dessa pesquisa foram fundamentados nas teorias de
Parzysz (2001) sobre provas formais e empíricas; Machado (1995) sobre as
quatro dimensões da construção do pensamento geométrico: percepção,
representação, construção e concepção; Duval (1995) sobre formas de
representação de informações; Duval e Egret (1989) sobre seqüências lógicas.
Usando a metodologia da Engenharia Didática, foram concebidas e aplicadas
a alunos da oitava série do Ensino Fundamental e do primeiro ano do Ensino
Médio, uma seqüência de atividades que visaram levá-los, de forma empírica, a
construir o conceito de hipótese/tese e, de forma dedutiva, a ordenar
proposições de modo a elaborar provas das propriedades dos paralelogramos.
A análise das produções dos alunos mostra dificuldades no processo de
argumentação e prova que podem ser agrupadas em três categorias:
dificuldades ligadas à elaboração de uma prova, dificuldades oriundas da
aceitação de provas empíricas e dificuldades ligadas à leitura e interpretação
de enunciados.
A análise também apontou que houve certos avanços nesse processo.
Alunos realizaram cálculos sem o apoio empírico, outros apresentaram
algumas provas formais completas, e mesmo aqueles que produziram provas
incompletas mostraram um raciocínio lógico até o ponto onde elas foram feitas.
Além disso, verificou-se que o fato de dois alunos poderem analisar a prova
feita pela outra dupla foi um fator muito positivo na seqüência apresentada
|
Page generated in 0.0512 seconds