• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Longwave-Infrared Optical Parametric Oscillator in Orientation-Patterned Gallium Arsenide

Feaver, Ryan K. January 2011 (has links)
No description available.
2

Secondary Electromagnetic Radiation Generated by HF Pumping of the Ionosphere

Norin, Lars January 2008 (has links)
Electromagnetic waves can be used to transmit information over long distances and are therefore often employed for communication purposes. The electromagnetic waves are reflected off material objects on their paths and interact with the medium through which they propagate. For instance, the plasma in the ionosphere can refract and even reflect radio waves propagating through it. By increasing the power of radio waves injected into the ionosphere, the waves start to modify the plasma, resulting in the generation of a wide range of nonlinear processes, including turbulence, in particular near the reflection region. By systematically varying the injected radio waves in terms of frequency, power, polarisation, duty cycle, inclination, etc. the ionosphere can be used as an outdoor laboratory for investigating fundamental properties of the near-Earth space environment as well as of plasma turbulence. In such ionospheric modification experiments, it has been discovered that the irradiation of the ionosphere by powerful radio waves leads to the formation of plasma density structures and to the emission of secondary electromagnetic radiation, a phenomenon known as stimulated electromagnetic emission. These processes are highly repeatable and have enabled systematic investigations of the nonlinear properties of the ionospheric plasma. In this thesis we investigate features of the plasma density structures and the secondary electromagnetic radiation. In a theoretical study we analyse a certain aspect of the formation of the plasma structures. The transient dynamics of the secondary radiation is investigated experimentally in a series of papers, focussing on the initial stage as well as on the decay. In one of the papers we use the transient dynamics of the secondary radiation to reveal the intimate relation between certain features of the radiation and structures of certain scales. Further, we present measurements of unprecedentedly strong secondary radiation, attributed to stimulated Brillouin scattering, and report measurements of the secondary radiation using a novel technique imposed on the transmitted radio waves.
3

Optical Parametric Devices in Periodically Poled LiTaO3

Levenius, Martin January 2013 (has links)
Optical parametric frequency conversion based on quasi phase matching (QPM) in nonlinear optical crystals is a powerful technique for generating coherent radiation in wavelength ranges spanning from the mid-infrared (mid-IR) to the blue, displaying low thermal load and high efficiency.This thesis shows how QPM in one- (1D) or two-dimensional (2D) lattices can be employed to engineer novel devices for parametric downconversion in the IR, af-fording freedom in designing both spectral and angular properties of the parametric output. Experimental demonstrations of parametric devices are supported by theoreti-cal modelling of the nonlinear conversion processes.In particular, broadband parametric downconversion has been investigated in 1D QPM lattices, through degenerate downconversion close to the point of zero group-velocity dispersion. Ultra-broadband optical parametric generation (OPG) of 185 THz bandwidth (at 10 dB), spanning more than one octave from 1.1 to 3.7 μm, has been achieved in periodically poled 1 mol% MgO-doped near-stoichiometric LiTaO3 (MgSLT) of 25 μm QPM period, pumped at 860 nm. Such broadband gain is of high interest for ultrashort optical pulse amplification, with applications in high harmonic generation, ultrafast spectroscopy and laser ablation. Furthermore, the det-rimental impact of parasitic upconversion, creating dips in the OPG spectrum, has been investigated. By altering the pump pulse duration, energy can be backconverted to create peaks at the involved OPG wavelengths, offering a possible tool to enhance broadband parametric gain spectra.The engineering of the angular properties of a parametric output benefits greatly from 2D QPM, which is investigated in this thesis by the specific example of hexagonally poled MgSLT. It is demonstrated how two OPG processes, supported by a single 2D QPM device, can exhibit angularly and spectrally degenerate signals (idlers). This degeneracy results in a coherent coupling between the two OPG pro-cesses and a spectrally degenerate twin-beam output in the mid-IR (near IR). 2D QPM devices exhibiting such coherently coupled downconversion processes can find applications as compact sources of entangled photon-pairs. This thesis further illus-trates the design freedom of 2D QPM through the demonstration of a device support-ing multiple parametric processes, thus generating multiple beams from the mid-IR to the blue spectral regions. / <p>QC 20131204</p>
4

Sources paramétriques optiques à base de cristaux apériodiques à agilité spectrale ultra-rapide / Rapidly tunable optical parametrical sources based on aperiodically quasi-phase matched nonlinear crystals

Descloux, Delphine 04 November 2016 (has links)
Les applications de spectroscopie, en particulier l’analyse de gaz à effet de serre, de composés organiques volatils ou autres polluants atmosphériques motivent le développement d’instrumentations spécifiques. L’étude présentée ici vise à proposer de nouvelles sources aptes à caractériser la composition d’un milieu gazeux, liquide ou solide. Les raies d’absorption optique de la plupart des gaz à détecter sont particulièrement fortes dans l’infrarouge moyen (en particulier entre 3 et 5 µm). Pour adresser cette plage spectrale, l’optique non linéaire propose de nombreuses solutions. Les sources rapportées ici sont des oscillateurs paramétriques optiques (OPO) dont la spécificité repose sur l’utilisation de cristaux non linéaires à quasi-accord de phase apériodique. Ces cristaux présentent de larges bandes de gain intrinsèques. Les travaux présentés permettent une étude du comportement de telles sources, absentes de la littérature en régime d’impulsions picosecondes. Des caractéristiques propres à l’utilisation des cristaux apériodiques sont rapportées. Un outil permettant une observation spectrale dynamique en régime picoseconde est proposé puis utilisé pour l’étude du démarrage de nos OPO. Ces sources large bande sont ensuite associées à des filtres spectraux rapides placés dans la cavité. Deux types de filtres sont utilisés. D’abord l’association d’un réseau de diffraction en configuration Littrow avec un déflecteur rapide. Ensuite l’insertion dans la cavité d’un réseau de Bragg en volume chirpé, placé sur une platine de translation, pour tirer profit de la condition de pompage synchrone. Ces deux solutions nous permettent d'obtenir des dispositifs largement et rapidement accordables en longueur d'onde. L’utilisation de telles sources pour des applications de détection de gaz est démontrée. / Spectroscopy applications related to greenhouse gases or other atmospheric pollutants, involve the development of a large range of specific tools. The aim of the work presented here is to develop new devices to characterize the composition of gas, liquid, or solid media. Most of the species to be detected show particularly strong optical absorption lines in the mid-infrared region (in particular around 3 to 5 µm). To address this specific spectral range, nonlinear optics provide a wide range of solutions. The sources reported here are optical parametric oscillators (OPO) based on aperiodically poled nonlinear crystals. Such crystals offer broad gain bandwidths. The work presented here contains a study of those sources, not reported so far in the literature for picosecond regime. Behaviors that are specific to the use of aperiodic crystals are reported. A useful tool allowing dynamical spectral studies is proposed, and implemented to investigate buildup regime of the picosecond OPO. Those sources are then associated with rapid spectral filters inserted in the cavity. Two different approaches are developed. The first is based on the association of a diffraction grating in Littrow configuration with a deflecting device. The second takes advantage of the synchronous pumping scheme, with an intracavity chirped volume Bragg grating mounted on a translation stage. Fast and wide wavelength tuning is demonstrated with those devices. Gas detection applications are also demonstrated.

Page generated in 0.1139 seconds