• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Purification and characterization of TbHsp70.c, a novel Hsp70 from Trypanosoma brucei

Burger, Adélle January 2014 (has links)
One of Africa’s neglected tropical diseases, African Trypanosomiasis, is not only fatal but also has a crippling impact on economic development. Heat shock proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. The expression of heat shock proteins increases during these heat shock conditions, and this is considered to play a role in differentiation of these vector-borne parasites. Heat shock protein 70 (Hsp70) is an important molecular chaperone that is involved in protein homeostasis, Hsp40 acts as a co-chaperone and stimulates its intrinsically weak ATPase activity. In silico analysis of the T. brucei genome has revealed the existence of 12 Hsp70 proteins and 65 Hsp40 proteins to date. A novel Hsp70, TbHsp70.c, was recently identified in T. brucei. Different from the prototypical Hsp70, TbHsp70.c contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. By implication the substrate range and mechanism by which the substrates are recognized may be novel. The ability of a Type I Hsp40, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective of this study was to biochemically characterize TbHsp70.c and its partnership with Tbj2 to further enhance our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed chaperone activities in their ability to suppress aggregation of thermolabile MDH. TbHsp70.c also suppressed aggregation of rhodanese. ATPase assays revealed that the ATPase activity of TbHsp70.c was stimulated by Tbj2. The targeted inhibition of the function of heat shock proteins is emerging as a tool to combat disease. The small molecule modulators quercetin and methylene blue are known to inhibit the ATPase activity of Hsp70. However, methylene blue did not significantly inhibit the ATPase activity of TbHsp70.c; while quercetin, did inhibit the ATPase activity. In vivo heat stress experiments indicated an up-regulation of the expression levels of TbHsp70.c. RNA interference studies showed partial knockdown of TbHsp70.c with no detrimental effect on the parasite. Fluorescence microscopy studies of TbHsp70.c showed a probable cytoplasmic subcellular localization. In this study both TbHsp70.c and Tbj2 demonstrated chaperone activity and Tbj2 possibly functions as a co-chaperone of TbHsp70.c.
2

Identification of TgElp3 as an essential, tail-anchored mitochondrial lysine acetyltransferase in the protozoan pathogen toxoplasma gondii

Stilger, Krista L. 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Toxoplasma gondii, a single-celled eukaryotic pathogen, has infected one-third of the world’s population and is the causative agent of toxoplasmosis. The disease primarily affects immunocompromised individuals such as AIDS, cancer, and transplant patients. The parasites can infect any nucleated cell in warm-blooded vertebrates, but because they preferentially target CNS, heart, and ocular tissue, manifestations of infection often include encephalitis, myocarditis, and a host of neurological and ocular disorders. Toxoplasma can also be transmitted congenitally by a mother who becomes infected for the first time during pregnancy, which may result in spontaneous abortion or birth defects in the child. Unfortunately, the therapy currently available for treating toxoplasmosis exhibits serious side effects and can cause severe allergic reactions. Therefore, there is a desperate need to identify novel drug targets for developing more effective, less toxic treatments. The regulation of proteins via lysine acetylation, a reversible post-translational modification, has previously been validated as a promising avenue for drug development. Lysine acetyltransferases (KATs) are responsible for the acetylation of hundreds of proteins throughout prokaryotic and eukaryotic cells. In Toxoplasma, we identified a KAT that exhibits homology to Elongator protein 3 (TgElp3), the catalytic component of a transcriptional elongation complex. TgElp3 contains the highly conserved radical S-adenosylmethionine and KAT domains but also possesses a unique C-terminal transmembrane domain (TMD). Interestingly, we found that the TMD anchors TgElp3 in the outer mitochondrial membrane (OMM) such that the catalytic domains are oriented towards the cytosol. Our results uncovered the first tail-anchored mitochondrial KAT reported for any species to date. We also discovered a shortened form of Elp3 present in mouse mitochondria, suggesting that Elp3 functions beyond transcriptional elongation across eukaryotes. Furthermore, we established that TgElp3 is essential for parasite viability and that its OMM localization is important for its function, highlighting its value as a potential target for future drug development.

Page generated in 0.0828 seconds