• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Μεθοδολογίες στην πολυ-αντικειμενική βελτιστοποίηση

Αντωνέλου, Γεωργία 07 December 2010 (has links)
Σε αυτήν την εργασία, παρουσιάζουμε τις βασικότερες κλασικές προσεγγίσεις επίλυσης Πολυ-αντικειμενικών Προβλημάτων Βελτιστοποίησης(ΠΠΒ)καθώς και ένα από τα πιο δημοφιλή λογισμικά για επίλυση ΠΠΒ, το NIMBUS. Συγκεκριμένα, δίνουμε τον ορισμό ενός ΠΠΒ, το θεωρητικό υπόβαθρο -- για την καλύτερη κατανόηση των μεθόδων που θα ακολουθήσουν - και τις διαφορές των ΠΠΒ με τα κλασσικά Μονο-αντικειμενικά προβλήματα Βελτιστοποίησης. Επιπλέον, παρουσιάζουμε τις τρεις κύριες κατηγορίες προσέγγισης των ΠΠΒ (μη-αλληλεπιδραστικές, αλληλεπιδραστικές, εξελικτικές) ο διαχωρισμός των οποίων γίνεται ανάλογα με την άμεση ή έμμεση εμπλοκή του Λήπτη Απόφασης. Η μελέτη μας εστιάζεται κυρίως στην κατηγορία των μη-αλληλεπιδραστικών προσεγγίσεων, στην οποία ο ΛΑ εμπλέκεται έμμεσα. Τέλος, ολοκληρώνουμε την μελέτη μας με την αναλυτική παρουσίαση της επίλυσης ενός ΠΠB με την χρήση του λογισμικού NIMBUS. / In this contribution, we study the classical approaches for solving Multi-objective Optimization Problems (MOOP) as well as one of the most popular software that solves MOOP, namely NIMBUS. More specifically, we present the definition and the theoretical background around MOOP and we discuss the differences between MOOP and the classical single-objective optimization problems. We also present the three main categories of approaches of solving MOOP (non-interactive, interactive, evolutionary) that are characterized by the way the Decision Maker participates in the solution. We focus on the first category by analyzing each of the non-interactive approaches. Finally, we conclude by presenting an analytic illustration of an example that solves a MOOP using the NIMBUS software.

Page generated in 0.3293 seconds