Spelling suggestions: "subject:"partial agonist"" "subject:"partial agonista""
1 |
Activation and allosteric modulation of the [alpha]1 glycine receptorWelsh, Brian Thomas 24 January 2011 (has links)
The glycine receptor (GlyR) is a ligand-gated ion channel and member of the nicotinic acetylcholine receptor superfamily. Glycine and the partial agonist taurine are both believed to be the endogenous ligands of the receptor. Partial agonists have lower efficacies than full agonists, eliciting submaximal responses even at saturating concentrations. Recent evidence suggests that efficacy at these receptors is determined by conformational changes that occur early in the process of receptor activation. We previously identified a mutation of the aspartate-97 residue to arginine (D97R), which produces a spontaneously active mutant with behavior that mimics the effects of saturating glycine concentrations on wildtype (WT) GlyR. This D97 residue is hypothesized to form an electrostatic interaction with arginine-119 on an adjacent subunit to stabilize a closed channel closed state. We found that the disruption of this bond converts taurine into a full agonist and greatly increases the efficacies of other [beta]-amino acid partial agonists. Our findings suggest that the determination of efficacy in the GlyR involves the disruption of an inter-subunit electrostatic interaction soon after binding. We next investigated whether the taurine efficacy could be enhanced by ethanol, a well-studied positive allosteric modulator of receptor function. Whole-cell recordings of WT GlyRs demonstrated that alcohol could potentiate the effect of low concentrations of taurine, but did not increase the efficacy of a saturating concentration. Therefore we sought to understand the mechanism by which alcohol enhances the GlyR, because ethanol's actions at inhibitory receptors in the brain are thought to produce many of the physiological effects associated with its use. We examined the effects of 3 [mu]M glycine ± 50 or 200 mM ethanol on outside-out patches expressing WT [alpha]1 GlyR, to determine the effects of alcohol at the single-channel level. Alcohol enhanced GlyR function in a very specific manner. It had minimal effects on open and closed dwell times. Instead, ethanol potentiated GlyR function almost exclusively by increasing burst durations and increasing the number of channel openings per burst, without affecting the percentage of open time within bursts. Kinetic modeling suggests that ethanol increases burst durations by decreasing the rate of glycine unbinding. / text
|
2 |
Mise en lumière des mécanismes d’activation des récepteurs métabotropes au glutamate par fluorescence en molécule unique / Illuminating the activation mechanism of metabotrobic Glutamate Receptors by single-molecule fluorescenceOlofsson, Linnéa 28 March 2014 (has links)
Les récepteurs métabotropes au glutamate (mGluR) sont des RCPG de classe C. Ils sont exprimés dans le système nerveux central où, suite à l'activation par le glutamate, ils participent à la modulation de la transmission nerveuse. En raison de leur rôle essentiel dans la régulation de l'activité synaptique, ils représentent des cibles potentielles pour le développement de médicaments contre les troubles neurologiques et psychiatriques telles que la schizophrénie, l'épilepsie, l'anxiété et la douleur. Mon projet de recherche de doctorat a porté sur l'étude du mécanisme d'activation du domaine extracellulaire de liaison au ligand du mGluR (ECD), avec un accent particulier sur ce qui différencie au niveau moléculaire un agoniste partiel d'un agoniste total. A cette fin, j'ai utilisé une méthode innovante à l'échelle de la molécule unique appelée Transfert d'Energie par Résonance de Forster, développé pour l'étude de la dynamique conformationnelle des molécules individuelles à l'échelle de la nanoseconde. J'ai réussi à montrer que le dimère d'ECD oscille entre une conformation active et une conformation de repos sur une échelle de temps de ~100μsec et que les ligands influencent les vitesses de transition entre ces états avec des vitesses intermédiaires pour les agonistes partiels. Ces résultats sont validés par l'utilisation de mutants spécifiques et indiquent clairement que le rôle des ligands n'est pas de stabiliser une conformation donnée mais de modifier le comportement dynamique du récepteur. L'ensemble de ces résultats contribuent à une meilleure description du mécanisme d'activation des mGluRs, et ouvrent potentiellement la voie à la compréhension des RCPG en général. / Metabotropic Glutamate Receptors (mGluRs) are class C GPCRs, expressed throughout the central nervous system. They participate in the long term modulation of neural transmission following activation by the excitatory neurotransmitter glutamate. This critical role in the regulation of synaptic activity makes them promising targets in the development of drugs for the treatment of various neurologic and psychiatric disorders such as schizophrenia, epilepsy, anxiety and pain relief. My Ph.D. research project has focused on the study of the activation mechanism of the mGluR extracellular ligand binding Venus-Flytrap domain (VFT), with particular emphasis on the differences between partial and full agonists on a molecular level. To this aim, I have used a state-of-the-art single molecule Förster Resonance Energy Transfer (smFRET) approach, developed for the study of conformational dynamics of single molecules on the nanosecond to millisecond timescale. I have managed to show that the VFT-dimer constantly oscillates between an active and a resting conformation on a ~100µsec timescale. I also discovered that the role of ligands is to influence the transition rate between these boundary states, and that partial agonists display intermediate transition rates. My results, supported by the use of specific mutants, clearly indicate that the role of ligands is not to stabilize a given conformation but to modify the overall dynamic of the receptor, which favors a conformational selection mechanism. Altogether, these results represent a most-valuable contribution to the better understanding of the activation mechanism of mGluRs, and potentially GPCRs in general.
|
Page generated in 0.058 seconds