Spelling suggestions: "subject:"partial differential, elliptic"" "subject:"partial differential, el·liptic""
1 |
Unicidade e não-degenerescencia para problemas envolvendo p-laplaciano em aneis / Uniqueness and nondegeneracy for problems involving p-laplacian in annuliDiniz, Hugo Alex Carneiro 23 August 2005 (has links)
Orientador: Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-08-04T21:17:17Z (GMT). No. of bitstreams: 1
Diniz_HugoAlexCarneiro_D.pdf: 770650 bytes, checksum: 55f077fc4cf6042e72a4b852d549e423 (MD5)
Previous issue date: 2005 / Resumo: Neste trabalho estudamos a unicidade e a não-degenerescência de soluções positi-vas radiais para problemas não-autônomos envolvendo o p-Iaplaciano em anéis e bolas, com condição de Neumann na parte interna do anel, e condição de Dirichlet na parte externa. Quando o domínio é uma bola, temos apenas a condição de Dirichlet. Consideraremos três perfis diferentes para o problema: sublinear, superlinear e positivo, superlinear com parte negativa. Utilizando a técnica de Coffman, a qual consiste em estudar os zeros da solu-ção do problema linearizado, através de argumentos de comparação de Sturm, provamos primeiramente a não-degenerescência. Pelo método de "shooting", obtemos a unicidade. Como aplicação, demonstramos um resultado de unicidade para o laplaciano em domínios não-simétricos (até mesmo não-convexos) "próximos" a uma bola / Abstract: In this work, we study uniqueness and non-degeneracy of positive radial solutions for non-autonomous problems involving p-Iaplacian in annuli and balls, with Neumann condition in the inner part of annulus, and Dirichlet condition in the outer part. We consider three different problems: sublinear, superlinear and positive, superlinear with a negative part. Using the Coffman's technique, which consists in studying the zeros of the solution of the linearized problem, through Sturm comparison arguments we prove non-degeneracy. By the "shooting" method, we prove uniqueness. As an application, we demonstrate a uniqueness result for laplacian in non-symmetric (even non-convex) domains ''near'' a baIl / Doutorado / Doutor em Matemática
|
2 |
Problemas do tipo Ambrosetti-Prodi para sistemas envolvendo expoentes subcritico e crítico / Ambrosetti-Prodi type problems for systems involving subcritical and critical esponentsPereira, Fabio Rodrigues 08 September 2005 (has links)
Orientador: Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-08-04T17:25:30Z (GMT). No. of bitstreams: 1
Pereira_FabioRodrigues_D.pdf: 1468332 bytes, checksum: 3e4d6ad380a672eddddbebbfbe9c85f4 (MD5)
Previous issue date: 2005 / Doutorado / Doutor em Matemática
|
Page generated in 0.0701 seconds