• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Completing partial latin squares with 2 filled rows and 3 filled columns

Göransson, Herman January 2020 (has links)
The set PLS(a, b; n) is the set of all partial latin squares of order n with a completed rows, b completed columns and all other cells empty. We identify reductions of partial latin squares in PLS(2, 3; n) by using permutations described by filled rows and intersections of filled rows and columns. We find that all partial latin squares in PLS(2, 3;n), where n is sufficiently large, can be completed if such a reduction can be completed. We also show that all partial latin squares in PLS(2, 3; n) where the intersection of filled rows and columns form a latin rectangle have completions for n ≥ 8.
2

Completing partial Latin squares with one filled row, column and symbol

Casselgren, Carl Johan, Häggkvist, Roland January 2013 (has links)
Let P be an n×n partial Latin square every non-empty cell of which lies in a fixed row r, a fixed column c or contains a fixed symbol s. Assume further that s is the symbol of cell (r,c) in P. We prove that P is completable to a Latin square if n≥8 and n is divisible by 4, or n≤7 and n∉{3,4,5}. Moreover, we present a polynomial algorithm for the completion of such a partial Latin square.

Page generated in 0.0893 seconds