• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laboratory experimental study of ocean waves propagating over a partially buried pipeline in a trench layer

Sun, K., Zhang, J., Gao, Y., Jeng, D., Guo, Yakun, Liang, Z. 23 January 2019 (has links)
Yes / Seabed instability around a pipeline is one of the primary concerns in offshore pipeline projects. To date, most studies focus on investigating the wave/current-induced response within a porous seabed around either a fully buried pipeline or a thoroughly exposed one. In this study, unlike previous investigations, a series of comprehensive laboratory experiments are carried out in a wave flume to investigate the wave-induced pore pressures around a partially embedded pipeline in a trench layer. Measurements show that the presence of the partially buried pipeline can significantly affect the excess pore pressure in a partially backfilled trench layer, which deviates considerably from that predicted by the theoretical approach. The morphology of the trench layer accompanied with the backfill sediments, especially the deeper trench and thicker backfill (i.e.,b≥1D,e≥0.5D), provides a certain degree of resistance to seabed instability. The amplitude of excess pore pressure around the trench layer roughly exhibits a left-right asymmetric distribution along the periphery of the pipeline, and decays sharply from the upper layer of the trench to the lower region. Deeper trench depth and thicker buried layer significantly weaken the pore-water pressures in the whole trench area, thus sheltering and protecting the submarine pipeline against the transient seabed liquefaction. / The National Key research and development program of China (2017YFC1404200), the research grants of Jiangsu (BK20150804), the marine renewable energy research project of State Oceanic Administration (GHME2015GC01), Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (Project No: 2016491011), the Royal Academy of Engineering the Distinguished Visiting Fellowship (DVF1718-8-7)

Page generated in 0.049 seconds