• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling water quality for water distribution systems

Maier, Stefan Heinrich January 1999 (has links)
Maintaining water quality in distribution systems has become a prominent issue in the study of water networks. This thesis concentrates on disinfectant and particle counts as two important indicators of water quality. The models discussed in this work are based on data collected by the author. The experimental set-up and procedure are described and observations of particle counts, particle counter size distributions, monochloramine as disinfectant, temperature, heterotrophic plate counts and epifluorescence microscopy counts are reported. A model of the response of particle counts to an increase in flow is developed. This model is obtained from specification derived from the data and assumptions, and is validated by its interpretability and its fit to data. A local shear-off density and an initial biofilm shedding profile were introduced and thus a linear model for this part of the water quality dynamics could be obtained. A procedure for the identification of the parameters of the local shear-off function and for the determination of the biofilm shedding profile is presented. This profile can be used to provide information about the status of the distribution system in terms of shear-off from the biofilm on the pipe walls. Monochloramine decay dynamics are investigated. The chlorine meter data is preprocessed with the help of titration data to correct meter drift. The data is then used in calibrating two different possible chlorine models: a model with a single decay coefficient and a model with bulk decay coefficient and wall demand (as used in Epanet). Important difficulties in identifying these parameters that come about because of the structure of the models are highlighted. Identified decay coefficients are compared and tested for flow, inlet chlorine and temperature dependence. The merits and limits of the approach to modelling taken in this work and a possible generalisation are discussed. The water industry perspective and an outlook are provided.
2

Impact of Surrounding Land Uses on Surface Water Quality

Elbag Jr., Mark A. 03 May 2006 (has links)
Source water protection is important to maintain public health by keeping harmful pathogens out of drinking water. Non-point source pollution is often times a major contributor of pollution to surface waters, and this form of pollution can be difficult to quantify. This study examined physical, chemical, and microbiological water quality parameters that may indicate pollution and may help to identify sources of pollution. These included measures of organic matter, particles, and indicator organisms (fecal coliforms and E. coli). The parameters were quantified in the West Boylston Brook, which serves as a tributary to the Wachusett Reservoir and is part of the drinking water supply for the Metropolitan Boston area. Water quality was determined over four seasons at seven locations in the brook that were selected to isolate specific land uses. The water quality parameters were first analyzed for trends by site and by season. Then, a correlation analysis was performed to determine relationships among the water quality parameters. Lastly, ANOVA analyses were used to determine statistically significant variations in water quality along the tributary.

Page generated in 0.0487 seconds