• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New process development of dense gas technology for the processing of pharmaceuticals

Sih, Roderick Peng Tze, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Drug re-engineering is an effective method for engineering existing products in alternative dosage forms and with enhanced pharmacokinetics. Insulin for the management of diabetic symptoms is an ideal candidate for re-engineering. Current subcutaneous therapy results in low patient compliance and is ineffective in meeting the physiological need for post-prandial insulin. Implementation of dose titration for more efficient blood-glucose management is also inconvenient and uncomfortable. Inhaled insulin is presented as a superior alternative to current therapy. The lungs offer excellent access to the circulatory system. Aerosols suspended in inspired air may deposit on lung epithelia and be available for systemic absorption. To evade the defense mechanism of the human respiratory tract, particle sizes have traditionally been minimized to achieve necessary aerosol performance. Recent developments indicate that more efficient performance augmentation may also be achieved by decreasing the bulk density of powders and modifying surface characteristics. Light and fluffy powders with rough surfaces experience much higher drag forces within an airstream. The Atomized Rapid Injection for Solvent Extraction (ARISE) process is a unique precipitation platform devised by incorporating a rapid injection technique for energetic solution delivery into supercritical fluid (SCF) media to effect recovery of previously dissolved pharmaceutical compounds. The quasi-instantaneous delivery of solutions alleviates the drawbacks of the use of capillary nozzles or micro-orifices, gradual elution and mixing controlled precipitation kinetics in existing SCF precipitation techniques. Most importantly, the energetic release of solution into SCF media effects supersaturation over a much larger spatial volume and promotes the homogeneous precipitation of low bulk density powders. ARISE processed insulin powders displayed characteristics that were highly influenced by anti-solvent conditions and powders of different qualities were obtained as a function of anti-solvent pressures. At lower anti-solvent pressures, powders of narrow particle size distribution were achieved, an indication of homogeneous supersaturation levels within processing. Span, the index of size distribution was as low as 0.991. At higher anti-solvent pressures, supersaturation rates were increased while mixing efficiencies decreased, resulting in powders of wider size distribution, and powder bulk densities as low as 0.01 g/ml. Low bulk density insulin displayed in-vitro respirable fractions as high as 78%.
2

New process development of dense gas technology for the processing of pharmaceuticals

Sih, Roderick Peng Tze, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Drug re-engineering is an effective method for engineering existing products in alternative dosage forms and with enhanced pharmacokinetics. Insulin for the management of diabetic symptoms is an ideal candidate for re-engineering. Current subcutaneous therapy results in low patient compliance and is ineffective in meeting the physiological need for post-prandial insulin. Implementation of dose titration for more efficient blood-glucose management is also inconvenient and uncomfortable. Inhaled insulin is presented as a superior alternative to current therapy. The lungs offer excellent access to the circulatory system. Aerosols suspended in inspired air may deposit on lung epithelia and be available for systemic absorption. To evade the defense mechanism of the human respiratory tract, particle sizes have traditionally been minimized to achieve necessary aerosol performance. Recent developments indicate that more efficient performance augmentation may also be achieved by decreasing the bulk density of powders and modifying surface characteristics. Light and fluffy powders with rough surfaces experience much higher drag forces within an airstream. The Atomized Rapid Injection for Solvent Extraction (ARISE) process is a unique precipitation platform devised by incorporating a rapid injection technique for energetic solution delivery into supercritical fluid (SCF) media to effect recovery of previously dissolved pharmaceutical compounds. The quasi-instantaneous delivery of solutions alleviates the drawbacks of the use of capillary nozzles or micro-orifices, gradual elution and mixing controlled precipitation kinetics in existing SCF precipitation techniques. Most importantly, the energetic release of solution into SCF media effects supersaturation over a much larger spatial volume and promotes the homogeneous precipitation of low bulk density powders. ARISE processed insulin powders displayed characteristics that were highly influenced by anti-solvent conditions and powders of different qualities were obtained as a function of anti-solvent pressures. At lower anti-solvent pressures, powders of narrow particle size distribution were achieved, an indication of homogeneous supersaturation levels within processing. Span, the index of size distribution was as low as 0.991. At higher anti-solvent pressures, supersaturation rates were increased while mixing efficiencies decreased, resulting in powders of wider size distribution, and powder bulk densities as low as 0.01 g/ml. Low bulk density insulin displayed in-vitro respirable fractions as high as 78%.
3

Preparation of Pharmaceutical Powders using Supercritical Fluid Technology : Pharmaceutical Applications and Physicochemical Characterisation of Powders

Velaga, Sitaram P. January 2004 (has links)
<p>The main aim of the thesis was to explore the potential of supercritical fluid (SF) techniques in the field of drug delivery. In particular, the relatively recently developed solution-enhanced dispersion by supercritical fluids (SEDS) technology has been employed in the preparation of particles/powders. </p><p>The manufacturing, stability and bioavailability of a dosage form strongly depend on the physicochemical properties of the formulation particles. For example, dry powder inhalation (DPI) for administering drugs to the respiratory tract require particles in a narrow size range (1-5 μm) to be effective. The identification of polymorphs and control of purity are also important issues since the physicochemical properties and therapeutic effects of the alternative forms of a drug may differ substantially. Solvent-based traditional crystallisation processes provide the product that may require further down-stream processing to obtain particles for advanced drug delivery applications. This can result in unwanted changes in the physicochemical properties of the particles and thus affect the performance of the dosage form. SF processing has addressed many of the challenges in particle formation research. Among several SF technologies developed for particle processing over the last decade, the SEDS process with its specially designed co-axial nozzle with mixing chamber has resulted in improved control over the particle formation process. Carbon dioxide (CO<sub>2</sub>) was used as the SF, because it has low critical points and is non-toxic, non-flammable and relatively inexpensive. </p><p>The initial part of the thesis concerns the formation of particles of model drugs such as hydrocortisone, budesonide and flunisolide using SEDS technology and the determination of the influence of processing conditions and solvents on particle characteristics such as size, shape and crystal structure. Particles of model drugs of differing shapes in a size range suitable for inhalation delivery were prepared. In the process, two new polymorphic forms of flunisolide were identified. This was the first report of SEDS technology being shown as a polymorph-screening tool. The remainder of the thesis deals with the development of SEDS technology for precipitating therapeutic proteins such as recombinant human growth hormone (hGH) from aqueous solutions. Powders of hGH were precipitated using SEDS without significant changes in the chemical or physical stability of the protein. The addition of sucrose to hGH in the feed solution promoted precipitation and minimised the detrimental effects of the solvent and/or the process on the physical aggregation of the protein. </p><p>In conclusion, this thesis highlights the applicability of the SEDS process in drug delivery research and advances general understanding of the particle formation phenomenon. The SEDS process may also prove to be a potential alternative technology for the precipitation of stable powders of therapeutic proteins.</p>
4

Preparation of Pharmaceutical Powders using Supercritical Fluid Technology : Pharmaceutical Applications and Physicochemical Characterisation of Powders

Velaga, Sitaram P. January 2004 (has links)
The main aim of the thesis was to explore the potential of supercritical fluid (SF) techniques in the field of drug delivery. In particular, the relatively recently developed solution-enhanced dispersion by supercritical fluids (SEDS) technology has been employed in the preparation of particles/powders. The manufacturing, stability and bioavailability of a dosage form strongly depend on the physicochemical properties of the formulation particles. For example, dry powder inhalation (DPI) for administering drugs to the respiratory tract require particles in a narrow size range (1-5 μm) to be effective. The identification of polymorphs and control of purity are also important issues since the physicochemical properties and therapeutic effects of the alternative forms of a drug may differ substantially. Solvent-based traditional crystallisation processes provide the product that may require further down-stream processing to obtain particles for advanced drug delivery applications. This can result in unwanted changes in the physicochemical properties of the particles and thus affect the performance of the dosage form. SF processing has addressed many of the challenges in particle formation research. Among several SF technologies developed for particle processing over the last decade, the SEDS process with its specially designed co-axial nozzle with mixing chamber has resulted in improved control over the particle formation process. Carbon dioxide (CO2) was used as the SF, because it has low critical points and is non-toxic, non-flammable and relatively inexpensive. The initial part of the thesis concerns the formation of particles of model drugs such as hydrocortisone, budesonide and flunisolide using SEDS technology and the determination of the influence of processing conditions and solvents on particle characteristics such as size, shape and crystal structure. Particles of model drugs of differing shapes in a size range suitable for inhalation delivery were prepared. In the process, two new polymorphic forms of flunisolide were identified. This was the first report of SEDS technology being shown as a polymorph-screening tool. The remainder of the thesis deals with the development of SEDS technology for precipitating therapeutic proteins such as recombinant human growth hormone (hGH) from aqueous solutions. Powders of hGH were precipitated using SEDS without significant changes in the chemical or physical stability of the protein. The addition of sucrose to hGH in the feed solution promoted precipitation and minimised the detrimental effects of the solvent and/or the process on the physical aggregation of the protein. In conclusion, this thesis highlights the applicability of the SEDS process in drug delivery research and advances general understanding of the particle formation phenomenon. The SEDS process may also prove to be a potential alternative technology for the precipitation of stable powders of therapeutic proteins.

Page generated in 0.0373 seconds