• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 41
  • 29
  • 19
  • 11
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 384
  • 384
  • 384
  • 118
  • 115
  • 100
  • 100
  • 75
  • 70
  • 52
  • 42
  • 36
  • 35
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models

Gaden, David L. F. 27 September 2007 (has links)
The research focus of this thesis is on modelling techniques for river kinetic turbines, to develop predictive numerical tools to further the design of this emerging hydro technology. The performance benefits of enclosing the turbine in a shroud are quantified numerically and an optimized shroud design is developed. The optimum performing model is then used to study river kinetic turbines, including different anchoring systems to enhance performance. Two different turbine numerical models are studied to simulate the rotor. Four different computational fluid dynamics (CFD) turbulence models are compared against a series of particle image velocimetry (PIV) experiments involving highly-separated diffuser-flow and nozzle-flow conditions. The risk of cavitation is briefly discussed as well as riverbed boundary layer losses. This study is part of an effort to develop this emerging technology for distributed power generation in provinces like Manitoba that have a river system well adapted for this technology.
132

Subcritical Transition to Turbulence in Taylor-Couette Flow

Borrero, Daniel 12 1900 (has links)
Turbulence is ubiquitous in naturally-occurring and man-made flows. Despite its importance in scientific and engineering applications, the transition from smooth laminar flow to disorganized turbulent flow is poorly understood. In some cases, the transition can be understood in the context of linear stability theory, which predicts when the underlying laminar solution will become unstable as a parameter is varied. For a large class of flows, however, this approach fails spectacularly, with theory predicting that the laminar flow is stable but experiments and simulations showing the emergence of spatiotemporal complexity. In this dissertation, the direct or subcritical transition to turbulence in Taylor-Couette flow (i.e., the flow between independently rotating co-axial cylinders) is studied experimentally. Chapter 1 discusses different scenarios for the transition to turbulence and recent advances in understanding the subcritical transition within the framework of dynamical systems theory. Chapter 2 presents a comprehensive review of earlier investigations of linearly stable Taylor-Couette flow. Chapter 3 presents the first systematic study of long-lived super-transients in Taylor-Couette flow with the aim of determining the correct dynamical model for turbulent dynamics in the transitional regime. Chapter 4 presents the results of experiments regarding the stability of Taylor-Couette flow to finite-amplitude perturbations in the form of injection/suction of fluid from the test section. Chapter 5 presents numerical investigations of axisymmetric laminar states with realistic boundary conditions. Chapter 6 discusses in detail the implementation of time-resolved tomographic particle image velocimetry (PIV) in the Taylor-Couette geometry and presents preliminary tomographic PIV measurements of the growth of turbulent spots from finite-amplitude perturbations. The main results are summarized in Chapter 7.
133

Investigations of acoustically-coupled shear layers using particle image velocimetry

Yan, Ting 16 February 2010 (has links)
Digital particle image velocimetry is employed to investigate acoustically-coupled flow past a coaxial deep cavity (side branch) resonator mounted in a duct. The emphasis is on the effect of the separation between the coaxial side branches on the interaction between separated shear layers that form across the side branch openings. Various resonator geometries are characterized in terms of patterns of instantaneous and time-averaged flow velocity, vorticity. and streamline topology at several phases of the acoustic cycle. In addition. phase-averaged images of the flow in conjunction with unsteady pressure measurements are evaluated in order to provide insight into the mechanisms of acoustic power generation. Generally, the acoustic source undergoes a significant transformation as the distance between the coaxial side branches changes. When the side branches are located relatively far away from each other. each of them forms an independent acoustic source. As the distance between the side branches decreases. interaction between the associated oscillating shear layers results in formation of a single acoustic source of complex spatial structure.
134

Investigation of Effervescent Atomization Using Laser-Based Measurement Techniques

Ghaemi, Sina 11 1900 (has links)
Effervescent atomization has been a topic of considerable investigation in the literature due to its important advantages over other atomization mechanisms. This work contributes to the development of both effervescent atomizers and also laser-based techniques for spray investigation In order to develop non-intrusive measurement techniques for spray applications, a procedure is suggested to characterize the shape of droplets using image-based droplet analyzers. Image discretization which is a major source of error in droplet shape measurement is evaluated using a simulation. The accuracy of StereoPIV system in conducting droplet velocity measurement in a spray field is also investigated. To assist in the design of effervescent atomizers, bubble formation during gas injection from a micro-tube into liquid cross-flow is investigated using a Shadow-PIV/PTV system. The generated spray fields of two effervescent atomizers which operate using a porous and a typical multi-hole air injector are compared using qualitative images and Shadow-PTV measurement.
135

Flow and Temperature Fields Generated by a Thermally Activated Interventional Vascular Device

McCurrin, Casey 2012 August 1900 (has links)
Concern for the nonphysiologic energy required to actuate medical devices utilizing “smart material” properties of shape memory polymer (SMP) compels a rigorous investigation into the flow and temperature fields surrounding a thermally activated catheter device. Multiple analyses include the theoretical approaches of exact analytical solutions and finite difference modeling combined with the experimental techniques of particle image velocimetry (PIV) and laser-induced fluorescence (LIF). The attained velocities and temperatures related to the convective heat transfer impact the potential for blood or tissue damage caused by intravascular heating. The clinical scenario involving a catheter device receiving heat within an artery is modeled in its simplest form as a cylindrical metal cap on the tip of a hollow glass rod placed inside of a long straight tube of constant cross-sectional area. Using a working fluid with properties comparable to blood, flow rates and energy input is then varied to determine their effects on velocity fields and temperature gradients. Analytical solutions for both the straight tube and concentric annulus demonstrate the two velocity distributions involved, as flow moves past the gap between the catheter and artery wall and then converges downstream to the Poiseuille solution for steady pipe flow of an incompressible fluid. To solve for the transition between the velocity profiles, computational fluid dynamics software simulates a finite volume model identical to the experimental setup used for intravascular heating experiments. PIV and LIF, both experimental techniques making use of similar hardware, determine velocity fields and temperature distributions, respectively, by imaging fluid seeding agents and their particular interaction with the light sheet. The velocity and temperature fields obtained experimentally are matched with the analytical and finite volume analysis through fluid properties, flow rates, and heating rates. Velocities determined during device heating show a small increase in local velocity, due to temperature dependent viscosity effects. When the device is centered in the model, flow patterns constrain the heat flow near the center axis and away from the channel walls. Increasing flow rate consequently decreases temperature rise, as the heat is carried more quickly downstream and away from the heat source. Using multiple analyses, fluid velocity and temperature distributions are first theorized with analytical and finite element methods and then validated through experimental imaging in a physical model.
136

Experimentelle Bestimmung des Geschwindigkeitsfeldes bei der Kohlenstaubfeuerung in O_tn2-CO_tn2-Atmosphäre /

Petery, Christian von. January 2007 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2007.
137

Transition in separation bubbles: physical mechanisms and passive control techniques /

McAuliffe, Brian R. January 1900 (has links)
Thesis (Ph.D.) - Carleton University, 2007. / Includes bibliographical references (p. 251-264). Also available in electronic format on the Internet.
138

Flow visualization for wake formation under solitary wave flow /

Seiffert, Betsy Rose. January 1900 (has links)
Thesis (M.Oc.E.)--Oregon State University, 2011. / Printout. Includes bibliographical references (leaf 70). Also available on the World Wide Web.
139

Numerische und experimentelle Untersuchung der ein- und zweiphasigen Strömung in einem technisch belüfteten Abwasserteich

Steinmann, Alexander. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Berlin.
140

A new instrumentation for particle velocity and velocity related measurements under water /

Zhu, Weijia, January 2006 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2006. / Typescript. Includes bibliographical references (leaves 97-99).

Page generated in 0.088 seconds