• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parameter Estimation for Nonlinear State Space Models

Wong, Jessica 23 April 2012 (has links)
This thesis explores the methodology of state, and in particular, parameter estimation for time series datasets. Various approaches are investigated that are suitable for nonlinear models and non-Gaussian observations using state space models. The methodologies are applied to a dataset consisting of the historical lynx and hare populations, typically modeled by the Lotka- Volterra equations. With this model and the observed dataset, particle filtering and parameter estimation methods are implemented as a way to better predict the state of the system. Methods for parameter estimation considered include: maximum likelihood estimation, state augmented particle filtering, multiple iterative filtering and particle Markov chain Monte Carlo (PMCMC) methods. The specific advantages and disadvantages for each technique are discussed. However, in most cases, PMCMC is the preferred parameter estimation solution. It has the advantage over other approaches in that it can well approximate any posterior distribution from which inference can be made. / Master's thesis
2

A Monte-Carlo approach to dominant scatterer tracking of a single extended target in high range-resolution radar

De Freitas, Allan January 2013 (has links)
In high range-resolution (HRR) radar systems, the returns from a single target may fall in multiple adjacent range bins which individually vary in amplitude. A target following this representation is commonly referred to as an extended target and results in more information about the target. However, extracting this information from the radar returns is challenging due to several complexities. These complexities include the single dimensional nature of the radar measurements, complexities associated with the scattering of electromagnetic waves, and complex environments in which radar systems are required to operate. There are several applications of HRR radar systems which extract target information with varying levels of success. A commonly used application is that of imaging referred to as synthetic aperture radar (SAR) and inverse SAR (ISAR) imaging. These techniques combine multiple single dimension measurements in order to obtain a single two dimensional image. These techniques rely on rotational motion between the target and the radar occurring during the collection of the single dimension measurements. In the case of ISAR, the radar is stationary while motion is induced by the target. There are several difficulties associated with the unknown motion of the target when standard Doppler processing techniques are used to synthesise ISAR images. In this dissertation, a non-standard Dop-pler approach, based on Bayesian inference techniques, was considered to address the difficulties. The target and observations were modelled with a non-linear state space model. Several different Bayesian techniques were implemented to infer the hidden states of the model, which coincide with the unknown characteristics of the target. A simulation platform was designed in order to analyse the performance of the implemented techniques. The implemented techniques were capable of successfully tracking a randomly generated target in a controlled environment. The influence of varying several parameters, related to the characteristics of the target and the implemented techniques, was explored. Finally, a comparison was made between standard Doppler processing and the Bayesian methods proposed. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Electrical, Electronic and Computer Engineering / unrestricted
3

Monte Carlo identifikační strategie pro stavové modely / Monte Carlo-Based Identification Strategies for State-Space Models

Papež, Milan January 2019 (has links)
Stavové modely jsou neobyčejně užitečné v mnoha inženýrských a vědeckých oblastech. Jejich atraktivita vychází především z toho faktu, že poskytují obecný nástroj pro popis široké škály dynamických systémů reálného světa. Nicméně, z důvodu jejich obecnosti, přidružené úlohy inference parametrů a stavů jsou ve většině praktických situacích nepoddajné. Tato dizertační práce uvažuje dvě zvláště důležité třídy nelineárních a ne-Gaussovských stavových modelů: podmíněně konjugované stavové modely a Markovsky přepínající nelineární modely. Hlavní rys těchto modelů spočívá v tom, že---navzdory jejich nepoddajnosti---obsahují poddajnou podstrukturu. Nepoddajná část požaduje abychom využily aproximační techniky. Monte Carlo výpočetní metody představují teoreticky a prakticky dobře etablovaný nástroj pro řešení tohoto problému. Výhoda těchto modelů spočívá v tom, že poddajná část může být využita pro zvýšení efektivity Monte Carlo metod tím, že se uchýlíme k Rao-Blackwellizaci. Konkrétně, tato doktorská práce navrhuje dva Rao-Blackwellizované částicové filtry pro identifikaci buďto statických anebo časově proměnných parametrů v podmíněně konjugovaných stavových modelech. Kromě toho, tato práce adoptuje nedávnou particle Markov chain Monte Carlo metodologii pro návrh Rao-Blackwellizovaných částicových Gibbsových jader pro vyhlazování stavů v Markovsky přepínajících nelineárních modelech. Tyto jádra jsou posléze použity pro inferenci parametrů metodou maximální věrohodnosti v uvažovaných modelech. Výsledné experimenty demonstrují, že navržené algoritmy překonávají příbuzné techniky ve smyslu přesnosti odhadu a výpočetního času.

Page generated in 0.1004 seconds