• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 59
  • 23
  • 21
  • 18
  • 12
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 324
  • 324
  • 324
  • 64
  • 62
  • 60
  • 56
  • 44
  • 39
  • 37
  • 36
  • 36
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Algoritmo híbrido para avaliação da integridade estrutural: uma abordagem heurística / Hybrid algorithm for damage detection: a heuristic approach

Begambre Carrillo, Oscar Javier 25 June 2007 (has links)
Neste estudo, o novo algoritmo hibrido autoconfigurado PSOS (Particle Swarm Optimization - Simplex) para avaliação da integridade estrutural a partir de respostas dinâmicas é apresentado. A formulação da função objetivo para o problema de minimização definido emprega funções de resposta em freqüência e/ou dados modais do sistema. Uma nova estratégia para o controle dos parâmetros do algoritmo Particle Swarm Optimization (PSO), baseada no uso do método de Nelder - Mead é desenvolvida; conseqüentemente, a convergência do PSO fica independente dos parâmetros heurísticos e sua estabilidade e precisão são melhoradas. O método híbrido proposto teve melhor desempenho, nas diversas funções teste analisadas, quando comparado com os algoritmos simulated annealing, algoritmos genéticos e o PSO. São apresentados diversos problemas de detecção de dano, levando em conta os efeitos do ruído e da falta de dados experimentais. Em todos os casos, a posição e extensão do dano foram determinadas com sucesso. Finalmente, usando o PSOS, os parâmetros de um oscilador não linear (oscilador de Duffing) foram identificados. / In this study, a new auto configured Particle Swarm Optimization - Simplex algorithm for damage detection has been proposed. The formulation of the objective function for the minimization problem is based on the frequency response functions (FRFs) and the modal parameters of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and accuracy are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA), the Genetic Algorithm (GA) and the basic PSO. Several damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied. In these cases, the damage location and extent were determined successfully. Finally, using the PSOS, a non-linear oscillator (Duffing oscillator) was identified with good results.
42

Algoritmo enxame de partículas evolutivo para o problema de coordenação de relés de sobrecorrente direcionais em sistemas elétricos de potência / Particle swarm evolutionary algorithm for the coordination problem of directional overcurrent relays in power systems

Fábio Marcelino de Paula Santos 21 June 2013 (has links)
Um sistema elétrico de potência agrega toda a estrutura pela qual a energia elétrica percorre, desde a sua geração até o seu consumo final. Nas últimas décadas observou-se um significativo aumento da demanda e, consequentemente, um aumento das interligações entre sistemas, tornando assim a operação e o controle destes extremamente complexos. Com o fim de obter a desejada operação destes sistemas, inúmeros estudos na área de Proteção de Sistemas Elétricos são realizados, pois é sabido que a interrupção desses serviços causam transtornos que podem assumir proporções desastrosas. Em sistemas elétricos malhados, nos quais as correntes de curto-circuito podem ser bidirecionais e podem ter intensidades diferentes devido a alterações topológicas nos mesmos, coordenar relés de sobrecorrente pode ser uma tarefa muito trabalhosa caso não haja nenhuma ferramenta de apoio. Neste contexto, este trabalho visa o desenvolvimento de uma metodologia eficiente que determine os ajustes otimizados dos relés de sobrecorrente direcionais instalados em sistemas elétricos malhados de forma a garantir a rapidez na eliminação da falta, bem como a coordenação e seletividade, considerando as várias intensidades das correntes de curto-circuito. Seguindo essa linha de raciocínio, observou-se que o uso de técnicas metaheurísticas para lidar com o problema da coordenação de relés é capaz de alcançar resultados significativos. No presente projeto, dentre os algoritmos inteligentes estudados, optou-se por pesquisar a aplicação do Algoritmo Enxame de Partículas Evolutivo (Evolutionary Particle Swarm Optimization) por este apresentar como características as vantagens tanto do Algoritmo Enxame de Partículas (Particle Swarm Optimization) quanto as dos Algoritmos Genéticos, possuindo assim grande potencial para solução destes tipos de problemas. / An electric power system aggregates all the structure in which the electric energy travels, from its generation to the final user. In the last decades it has been observed a significative increase of the demand and, consequently, an increment of the number of interconnections between systems, making the operation and control of them extremely complex. Aiming to obtain a good operation of this kind of systems, a lot of effort in the research area of power system protection has been spent, because it is known that the interruption of this service causes disorders that may assume disastrous proportions. In meshed power systems, in which the shortcircuit currents might be bidirectional and might have different magnitudes due to topological changes on them, to coordinate overcurrent relays may be a really hard task if you do not have a support tool. Look in this context, this work aims the development of and efficient methodology thats determine the optimal parameters of the directional overcurrent relays in a meshed electric power system ensuring the quickness in the fault elimination, as well as the coordination and selectivity of the protection system, considering the various intensities of the short-circuit currents. Maintaining this line, it has been noticed that the use of metaheuristics to deal with the problem of relay coordination is capable of achieving promissory results. In the present research, among the studied intelligent algorithms, it was chosen to use in it the Evolutionary Particle Swarm Optimization, due to its features thats is the advantages of the Particle Swarm Optimization as well as the Genetic Algorithms ones, hence it has great potential do solve theses kind of problems.
43

Algoritmo híbrido para avaliação da integridade estrutural: uma abordagem heurística / Hybrid algorithm for damage detection: a heuristic approach

Oscar Javier Begambre Carrillo 25 June 2007 (has links)
Neste estudo, o novo algoritmo hibrido autoconfigurado PSOS (Particle Swarm Optimization - Simplex) para avaliação da integridade estrutural a partir de respostas dinâmicas é apresentado. A formulação da função objetivo para o problema de minimização definido emprega funções de resposta em freqüência e/ou dados modais do sistema. Uma nova estratégia para o controle dos parâmetros do algoritmo Particle Swarm Optimization (PSO), baseada no uso do método de Nelder - Mead é desenvolvida; conseqüentemente, a convergência do PSO fica independente dos parâmetros heurísticos e sua estabilidade e precisão são melhoradas. O método híbrido proposto teve melhor desempenho, nas diversas funções teste analisadas, quando comparado com os algoritmos simulated annealing, algoritmos genéticos e o PSO. São apresentados diversos problemas de detecção de dano, levando em conta os efeitos do ruído e da falta de dados experimentais. Em todos os casos, a posição e extensão do dano foram determinadas com sucesso. Finalmente, usando o PSOS, os parâmetros de um oscilador não linear (oscilador de Duffing) foram identificados. / In this study, a new auto configured Particle Swarm Optimization - Simplex algorithm for damage detection has been proposed. The formulation of the objective function for the minimization problem is based on the frequency response functions (FRFs) and the modal parameters of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and accuracy are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA), the Genetic Algorithm (GA) and the basic PSO. Several damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied. In these cases, the damage location and extent were determined successfully. Finally, using the PSOS, a non-linear oscillator (Duffing oscillator) was identified with good results.
44

A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values

SALES FILHO, Romero Luiz Mendonça 24 February 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-08-05T14:42:09Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TESE PPGEP (Romero Luiz M. Sales Filho).pdf: 3453451 bytes, checksum: be76714c0d9a1e907faa85d15041f6ca (MD5) / Made available in DSpace on 2016-08-05T14:42:09Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TESE PPGEP (Romero Luiz M. Sales Filho).pdf: 3453451 bytes, checksum: be76714c0d9a1e907faa85d15041f6ca (MD5) Previous issue date: 2016-02-24 / CAPEs / In recent years, a family of probability distributions based on Nonextensive Statistical Mechanics, known as q-distributions, has experienced a surge in terms of applications to several fields of science and engineering. In this work the _-Exponential distribution will be studied in detail. One of the features of this distribution is the capability of modeling data that have a power law behavior, since it has a heavy-tailed probability density function (PDF) for particular values of its parameters. This feature allows us to consider this distribution as a candidate to model data sets with extremely large values (e.g. cycles to failure). Once the analytical expressions for the maximum likelihood estimates (MLE) of _-Exponential are very difficult to be obtained, in this work, we will obtain the MLE for the parameters of the _- Exponential using two different optimization methods: particle swarm optimization (PSO) and Nelder-Mead (NM), which are also coupled with parametric and non-parametric bootstrap methods in order to obtain confidence intervals for these parameters; asymptotic intervals are also derived. Besides, we will make inference about a useful performance metric in system reliability, the called index __(_, where the stress _ and strength are independent q-Exponential random variables with different parameters. In fact, when dealing with practical problems of stress-strength reliability, one can work with fatigue life data and make use of the well-known relation between stress and cycles until failure. For some materials, this kind of data can involve extremely large values and the capability of the q- Exponential distribution to model data with extremely large values makes this distribution a good candidate to adjust stress-strength models. In terms of system reliability, the index _ is considered a topic of great interest, so we will develop the maximum likelihood estimator (MLE) for the index _ and show that this estimator is obtained by a function that depends on the parameters of the distributions for and _. The behavior of the MLE for the index _ is assessed by means of simulated experiments. Moreover, confidence intervals are developed based on parametric and non-parametric bootstrap. As an example of application, we consider two experimental data sets taken from literature: the first is related to the analysis of high cycle fatigue properties of ductile cast iron for wind turbine components, and the second one evaluates the specimen size effects on gigacycle fatigue properties of high-strength steel. / Nos últimos anos, tem sido notado em diversas áreas da ciência e engenharia, um aumento significativo na aplicabilidade da família q de distribuições de probabilidade que se baseia em Mecânica Estatística Não Extensiva. Uma das características da distribuição q-Exponencial é a capacidade de modelar dados que apresentam comportamento de lei de potência, uma vez que tal distribuição possui uma função densidade de probabilidade (FDP) que apresenta cauda pesada para determinados valores de parâmetros. Esta característica permite-nos considerar tal distribuição como candidata para modelar conjuntos de dados que apresentam valores extremamente grandes (Ex.: ciclos até a falha). Uma vez que expressões analíticas para os estimadores de máxima verossimilhança dos parâmetros não são facilmente encontradas, neste trabalho, iremos obter as estimativas de máxima verossimilhança dos parâmetros através de dois métodos de otimização: particle swarm optimization (PSO) e Nelder-Mead (NM), que além das estimativas pontuais, irão nos fornecer juntamente com abordagens bootstrap, intervalos de confiança para os parâmetros da distribuição; intervalos assintóticos também serão derivados. Além disso, faremos inferência sobre um importante índice de confiabilidade, o chamado Índice __(_, onde Y (estresse) e X (força) são variáveis aleatórias independentes. De fato, quando tratamos de problemas práticos de força-estresse, podemos trabalhar com dados de fadiga e fazer uso da bem conhecida relação entre estresse e ciclos até a falha. Para alguns materiais, esse tipo de variável pode apresentar dados com valores muito grandes e a capacidade da q-Exponencial em modelar esse tipo de dado torna essa uma distribuição a ser considerada para ajustar modelos de força-estresse. Em termos de confiabilidade de sistemas, o índice R é considerado um tópico de bastante interesse, assim iremos desenvolver os estimadores de máxima verossimilhança para esse índice e mostrar que esse estimador é obtido através de uma função que depende dos parâmetros da distribuição de X e Y. O comportamento do estimador é investigado através de experimentos simulados. Intervalos de confiança são desenvolvidos através de bootstrap paramétrico e nãoparamétrico. Duas aplicações envolvendo dados de ciclos até a falha e retiradas da literatura são consideradas: a primeira para ferro fundido e a segunda para aço de alta resistência.
45

Detecção automática de massas em imagens mamográficas usando particle swarm optimization (PSO) e índice de diversidade funcional

Silva Neto, Otilio Paulo da 04 March 2016 (has links)
Made available in DSpace on 2016-08-17T14:52:40Z (GMT). No. of bitstreams: 1 Dissertacao-OtilioPauloSilva.pdf: 2236988 bytes, checksum: e67439b623fd83b01f7bcce0020365fb (MD5) Previous issue date: 2016-03-04 / Breast cancer is now set on the world stage as the most common among women and the second biggest killer. It is known that diagnosed early, the chance of cure is quite significant, on the other hand, almost late discovery leads to death. Mammography is the most common test that allows early detection of cancer, this procedure can show injury in the early stages also contribute to the discovery and diagnosis of breast lesions. Systems computer aided, have been shown to be very important tools in aid to specialists in diagnosing injuries. This paper proposes a computational methodology to assist in the discovery of mass in dense and nondense breasts. This paper proposes a computational methodology to assist in the discovery of mass in dense and non-dense breasts. Divided into 6 stages, this methodology begins with the acquisition of the acquired breast image Digital Database for Screening Mammography (DDSM). Then the second phase is done preprocessing to eliminate and enhance the image structures. In the third phase is executed targeting with the Particle Swarm Optimization (PSO) to find regions of interest (ROIs) candidates for mass. The fourth stage is reduction of false positives, which is divided into two parts, reduction by distance and clustering graph, both with the aim of removing unwanted ROIs. In the fifth stage are extracted texture features using the functional diversity indicia (FD). Finally, in the sixth phase, the classifier uses support vector machine (SVM) to validate the proposed methodology. The best values found for non-dense breasts, resulted in sensitivity of 96.13%, specificity of 91.17%, accuracy of 93.52%, the taxe of false positives per image 0.64 and acurva free-response receiver operating characteristic (FROC) with 0.98. The best finds for dense breasts hurt with the sensitivity of 97.52%, specificity of 92.28%, accuracy of 94.82% a false positive rate of 0.38 per image and FROC curve 0.99. The best finds with all the dense and non dense breasts Showed 95.36% sensitivity, 89.00% specificity, 92.00% accuracy, 0.75 the rate of false positives per image and 0, 98 FROC curve. / O câncer de mama hoje é configurado no senário mundial como o mais comum entre as mulheres e o segundo que mais mata. Sabe-se que diagnosticado precocemente, a chance de cura é bem significativa, por outro lado, a descoberta tardia praticamente leva a morte. A mamografia é o exame mais comum que permite a descoberta precoce do câncer, esse procedimento consegue mostrar lesões nas fases iniciais, além de contribuir para a descoberta e o diagnóstico de lesões na mama. Sistemas auxiliados por computador, têm-se mostrado ferramentas importantíssimas, no auxilio a especialistas em diagnosticar lesões. Este trabalho propõe uma metodologia computacional para auxiliar na descoberta de massas em mamas densas e não densas. Dividida em 6 fases, esta metodologia se inicia com a aquisição da imagem da mama adquirida da Digital Database for Screening Mammography (DDSM). Em seguida, na segunda fase é feito o pré-processamento para eliminar e realçar as estruturas da imagem. Na terceira fase executa-se a segmentação com o Particle Swarm Optimization (PSO) para encontrar as regiões de interesse (ROIs) candidatas a massa. A quarta fase é a redução de falsos positivos, que se subdivide em duas partes, sendo a redução pela distância e o graph clustering, ambos com o objetivo de remover ROIs indesejadas. Na quinta fase são extraídas as características de textura utilizando os índices de diversidade funcional (FD). Por fim, na sexta fase, utiliza-se o classificador máquina de vetores de suporte (SVM) para validar a metodologia proposta. Os melhores valores achados para as mamas não densas, resultaram na sensibilidade de 96,13%, especificidade de 91,17%, acurácia de 93,52%, a taxe de falsos positivos por imagem de 0,64 e a acurva Free-response Receiver Operating Characteristic (FROC) com 0,98. Os melhores achados para as mamas densas firam com a sensibilidade de 97,52%, especificidade de 92,28%, acurácia de 94,82%, uma taxa de falsos positivos por imagem de 0,38 e a curva FROC de 0,99. Os melhores achados com todas as mamas densas e não densas, apresentaram 95,36% de sensibilidade, 89,00% de especificidade, 92,00% de acurácia, 0,75 a taxa de falsos positivos por imagem e 0,98 a curva FROC.
46

Multi-guided particle swarm optimization : a multi-objective particle swarm optimizer

Scheepers, Christiaan January 2017 (has links)
An exploratory analysis in low-dimensional objective space of the vector evaluated particle swarm optimization (VEPSO) algorithm is presented. A novel visualization technique is presented and applied to perform the exploratory analysis. The exploratory analysis together with a quantitative analysis revealed that the VEPSO algorithm continues to explore without exploiting the well-performing areas of the search space. A detailed investigation into the influence that the choice of archive implementation has on the performance of the VEPSO algorithm is presented. Both the Pareto-optimal front (POF) solution diversity and convergence towards the true POF is considered during the investigation. Attainment surfaces are investigated for their suitability in efficiently comparing two multi-objective optimization (MOO) algorithms. A new measure to objectively compare algorithms in multi-dimensional objective space, based on attainment surfaces, is presented. This measure, referred to as the porcupine measure, adapts the attainment surface measure by using a statistical test along with weighted intersection lines. Loosely based on the VEPSO algorithm, the multi-guided particle swarm optimization (MGPSO) algorithm is presented and evaluated. The results indicate that the MGPSO algorithm overcomes the weaknesses of the VEPSO algorithm and also outperforms a number of state of the art MOO algorithms on at least two benchmark test sets. / Thesis (PhD)--University of Pretoria, 2017. / Computer Science / PhD / Unrestricted
47

Statische und dynamische Hysteresemodelle für die Auslegung und Simulation von elektromagnetischen Aktoren

Shmachkov, Mikhail, Neumann, Holger, Rottenbach, Torsten, Worlitz, Frank 13 December 2023 (has links)
Beim Designprozess elektromagnetischer Aktoren ist die zuverlässige Bestimmung der zu erwartenden Verluste von großer Bedeutung. Während ohmsche Verluste sehr einfach bestimmt werden können, stellen Eisen-/Hystereseverluste häufig einen Unsicherheitsfaktor dar. Hier sind Herstellerangaben meist nur für einige wenige Arbeitspunkte bei harmonischem Betrieb vorhanden. Für den Einsatz in numerischen Berechnungen bei der Auslegung und Simulation solcher Aktoren ist eine detaillierte Beschreibung der ferromagnetischen Hysterese notwendig. Zu diesem Zweck werden häufig das Jiles-Atherton-Hysteresemodell und dessen Weiterentwicklungen eingesetzt. Aufgrund der Vielzahl an verfügbaren modifizierten Varianten wurde im Rahmen dieses Beitrages zunächst untersucht, welche Modellversionen zueinander kompatibel sind. So wird die Verwendung statischer und dynamischer Hysteresemodelle sowie die jeweilig dazu passende inverse Modellform bei konsistenter Parametrierung ermöglicht. Weiterhin wird die Parameteridentifikation anhand experimentell ermittelter Hysteresekurven für verschiedene Werkstoffe mit Hilfe der Particle-Swarm-Optimization vorgestellt. / The reliable determination of the expected losses is important for the design process of electromagnetic actuators. While resistive losses can be determined very easily, iron/hysteresis losses often represent an uncertainty factor. Manufacturer’s specifications are usually only available for a few operating points with harmonic excitation. A detailed description of the ferromagnetic hysteresis is necessary for the use in numerical calculations in the design and simulation of such actuators. For this purpose, the Jiles-Atherton hysteresis model and its further developments are often used. Due to the large number of available modified variants, at first an examination on which model versions are compatible with each other has been performed. This allows the use of static and dynamic hysteresis models as well as the corresponding inverse model form with consistent parameterization. Furthermore, the parameter identification based on experimentally determined hysteresis curves for different materials is presented using particle swarm optimization.
48

ENAMS : energy optimization algorithm for mobile wireless sensor networks using evolutionary computation and swarm intelligence

Al-Obaidi, Mohanad January 2010 (has links)
Although traditionally Wireless Sensor Network (WSNs) have been regarded as static sensor arrays used mainly for environmental monitoring, recently, its applications have undergone a paradigm shift from static to more dynamic environments, where nodes are attached to moving objects, people or animals. Applications that use WSNs in motion are broad, ranging from transport and logistics to animal monitoring, health care and military. These application domains have a number of characteristics that challenge the algorithmic design of WSNs. Firstly, mobility has a negative effect on the quality of the wireless communication and the performance of networking protocols. Nevertheless, it has been shown that mobility can enhance the functionality of the network by exploiting the movement patterns of mobile objects. Secondly, the heterogeneity of devices in a WSN has to be taken into account for increasing the network performance and lifetime. Thirdly, the WSN services should ideally assist the user in an unobtrusive and transparent way. Fourthly, energy-efficiency and scalability are of primary importance to prevent the network performance degradation. This thesis contributes toward the design of a new hybrid optimization algorithm; ENAMS (Energy optimizatioN Algorithm for Mobile Sensor networks) which is based on the Evolutionary Computation and Swarm Intelligence to increase the life time of mobile wireless sensor networks. The presented algorithm is suitable for large scale mobile sensor networks and provides a robust and energy- efficient communication mechanism by dividing the sensor-nodes into clusters, where the number of clusters is not predefined and the sensors within each cluster are not necessary to be distributed in the same density. The presented algorithm enables the sensor nodes to move as swarms within the search space while keeping optimum distances between the sensors. To verify the objectives of the proposed algorithm, the LEGO-NXT MIND-STORMS robots are used to act as particles in a moving swarm keeping the optimum distances while tracking each other within the permitted distance range in the search space.
49

Bio-inspired optimization algorithms for smart antennas

Zuniga, Virgilio January 2011 (has links)
This thesis studies the effectiveness of bio-inspired optimization algorithms in controlling adaptive antenna arrays. Smart antennas are able to automatically extract the desired signal from interferer signals and external noise. The angular pattern depends on the number of antenna elements, their geometrical arrangement, and their relative amplitude and phases. In the present work different antenna geometries are tested and compared when their array weights are optimized by different techniques. First, the Genetic Algorithm and Particle Swarm Optimization algorithms are used to find the best set of phases between antenna elements to obtain a desired antenna pattern. This pattern must meet several restraints, for example: Maximizing the power of the main lobe at a desired direction while keeping nulls towards interferers. A series of experiments show that the PSO achieves better and more consistent radiation patterns than the GA in terms of the total area of the antenna pattern. A second set of experiments use the Signal-to-Interference-plus-Noise-Ratio as the fitness function of optimization algorithms to find the array weights that configure a rectangular array. The results suggest an advantage in performance by reducing the number of iterations taken by the PSO, thus lowering the computational cost. During the development of this thesis, it was found that the initial states and particular parameters of the optimization algorithms affected their overall outcome. The third part of this work deals with the meta-optimization of these parameters to achieve the best results independently from particular initial parameters. Four algorithms were studied: Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing and Hill Climb. It was found that the meta-optimization algorithms Local Unimodal Sampling and Pattern Search performed better to set the initial parameters and obtain the best performance of the bio-inspired methods studied.
50

Improving a Particle Swarm Optimization-based Clustering Method

Shahadat, Sharif 19 May 2017 (has links)
This thesis discusses clustering related works with emphasis on Particle Swarm Optimization (PSO) principles. Specifically, we review in detail the PSO clustering algorithm proposed by Van Der Merwe & Engelbrecht, the particle swarm clustering (PSC) algorithm proposed by Cohen & de Castro, Szabo’s modified PSC (mPSC), and Georgieva & Engelbrecht’s Cooperative-Multi-Population PSO (CMPSO). In this thesis, an improvement over Van Der Merwe & Engelbrecht’s PSO clustering has been proposed and tested for standard datasets. The improvements observed in those experiments vary from slight to moderate, both in terms of minimizing the cost function, and in terms of run time.

Page generated in 0.127 seconds