• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particulate Emission Control and Characteristic Identification

Lo, Yu-Yun 27 June 2012 (has links)
Burning joss paper and incense is a significant Taoist ceremonial practice in Asian countries such as Taiwan and China. The burning of joss paper has been demonstrated to significantly create particulate matters (PM) and to cause air pollution problems. PM in the atmosphere is among the primary air pollutants, and their sources are factories, vehicles, construction fields, combustion, vehicle exhaust dust, and aerosols derived from photochemical reactions. Numerous sources of environmental PM exist. Thus, the ability to rapidly determine the particulate type and source to adjust the controls and develop policies is an important issue for air quality management. This dissertation consists of two parts on the particulate emission control and characteristic identification. In the first part, we study investigates feasible options of air pollution control devices (APCD) for joss paper furnaces in temples, and used a 40 kg/hr joss paper furnace for testing. This paper examined particulate removal efficiencies of two options: a bag house (capacity 30 m3/min at 108 ¢J) and a wet scrubber (capacity 40 m3/min at 150 ¢J). The results indicate that PM in the diluted flue gas at the bag-house inlet were 76.6 ¡Ó 32.7 mg/Nm3 (average ¡Ó standard deviation), and those at the outlet of the bag-house could be reduced to as low as 0.55 ¡Ó 1.28 mg/Nm3. An average PM removal efficiency of 99.3 % could be obtained with a filtration speed of approximately 2.0 m/min evaluated at 108 ¢J. The wet scrubber removed approximately 70 % of PM, with scrubbing intensities higher than 4.0 L/m2.s across the scrubber cross-section. For the duration of the experiment, no visual white smoke (water mist) was observed at the exit of the wet scrubber with a combustion rate of 16 kg/hr of joss paper, and the scrubbing water temperature was automatically sustained at lower than 61 ¢J. The study concluded that both bag filtration and wet scrubbing are suitable techniques to control particulate emission from joss paper furnaces in Taiwanese temples. The bag filtration technique, while achieving higher efficiencies than the wet scrubbing technique, requires more space and cost. Examinations of bottom and fly ashes of combusted joss paper with X-ray diffraction (XRD) revealed the presence of calcium oxide in the fly ash, while certain metals were found in the bottom ash. The second part aimed at the investigates surface characteristics of airborne PM sampled from air pollution control devices of a number of industrial operations. The PM sources selected for this study comprise the following operations or processes: a coke oven, iron ore sintering furnace, blast furnace, and basic oxygen furnace from an integrated steelmaking plant; electric arc furnaces of two secondary steelmaking plants; a municipal solids waste incinerator; two oil-fired boilers; and a coal-fired power plant boiler. The collected PM samples were analyzed using a scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscope (EDS) to determine their chemical composition and surface characteristics. Results for each PM sample regarding size, surface characteristics, and chemical compositions can be used to trace the related emission industrial sources.
2

Measurement and control of particulate emissions from cattle feedlots in Kansas

Guo, Li January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Ronaldo G. Maghirang / Emissions of particulate matter (PM) are an increasing concern for large open beef cattle feedlots. Research is needed to develop science-based information on PM emissions and abatement measures for mitigating those emissions. This research was conducted to (1) measure PM concentrations emitted from large cattle feedlots, (2) compare different samplers for measuring concentrations of PM with equivalent aerodynamic diameter of 10 µm or less (PM10), (3) evaluate the relative effectiveness of pen surface treatments in reducing PM10 emissions, and (4) predict PM control efficiency of vegetative barriers. Concentrations of PM with equivalent aerodynamic diameter of 2.5 µm or less (PM2.5), PM10, and total suspended particulates (TSP) upwind and downwind of two large cattle feedlots (KS1, KS2) in Kansas were measured with gravimetric samplers. The downwind and net concentrations generally decreased with increasing water content (WC) of the pen surface; for effective control of PM emissions from feedlots, it appears that pen surface WC should be at least 20% (wet basis). Three types of samplers for measuring PM10 concentrations in feedlots KS1 and KS2 were compared: Tapered Element Oscillating Microbalance™ (TEOM), high-volume (HV), and low-volume (LV) PM10 samplers. Measured PM10 concentration was generally largest with the TEOM PM10 sampler and smallest with the LV PM10 sampler. A laboratory apparatus was developed for measuring the PM10 emission potential of pen surfaces as affected by surface treatments. The apparatus was equipped with a simulated pen surface, mock cattle hooves that moved horizontally across the pen surface, and PM10 samplers that collected emitted PM10. Of the surface treatments evaluated, application of water (6.4 mm) and hay (723 g/m2) exhibited the greatest percentage reduction in PM10 emission potential (69% and 77%, respectively) compared with the untreated manure layer. Computational fluid dynamics (CFD) was applied to predict airflow and particle collection by a row of trees (2.2 m high × 1.6 m wide). Predicted particle collection efficiencies generally agreed with published data and ranged from less than 1% for 0.875-µm particles to approximately 32% for 15-µm particles.

Page generated in 0.0989 seconds