• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle laden inhomogeneous elastic turbulence / Turbulence élastique inhomogène chargée de particules

Garg, Himani 15 February 2019 (has links)
Les expériences de laboratoire montrent que, même dans des solutions très diluées, l’interaction des polymères avec des écoulements fluides peut modifier considérablement les propriétés des écoulements turbulents ou, si l’écoulement est laminaire, peut déclencher un nouveau type de mouvement irrégulier appelé «turbulence élastique». Les écoulements dans un tel régime dynamique sont prometteurs pour améliorer l'efficacité du mélange dans les applications microfluidiques, qui impliquent souvent la présence d'impuretés de taille finie en suspension, telles que des particules solides petites et lourdes. La compréhension de la dispersion des particules dans les écoulements à grand nombre de Reynolds des fluides newtoniens et non newtoniens a déjà été abordée dans des études antérieures, qui ont mis en évidence des effets à la fois à grande et à petite échelle et est un sujet d'intérêt à la fois fondamental et pour des applications environnementales ou industrielles par exemple. Cependant, la dynamique des particules dans les écoulements élastiques et turbulents reste encore peu explorée. L’étude ici vise à étudier les propriétés d’agrégation de particules matérielles ponctuelles (plus lourdes que le fluide porteur) dans les fluides viscoélastiques dans des conditions de turbulence élastique (c’est-à-dire dans le cas de faible inertie du fluide et de grande élasticité). Nous effectuons des simulations numériques directes bi-dimensionelles d’écoulements périodiques avec cisaillement moyen de Kolmogorov avec des solutions de polymères dilués décrites par le modèle Oldroyd-B. Les caractéristiques à petite et grande échelle de la distribution résultante inhomogène de particules sont examinées, en se concentrant sur leur connexion avec la structure sous-jacente de l’écoulement . Notre analyse révèle que les particules sont préférentiellement regroupées dans des régions où les polymères sont instantanément maximalement étirés. L’intensité d’un tel phénomène dépend de l’interaction paramétrée par le nombre de Stokes, entre l’inertie des particules et l’échelle de temps typique associée à l’écoulement de turbulence élastique, et est la plus grande pour des valeurs intermédiaires d’inertie de particules. En particulier, il est montré que la concentration préférentielle de suspensions de particules inertielles dans de tels écoulements ressemblant à la turbulence découle de la nature dissipative de leurs dynamiques. Nous établissons une caractérisation quantitative de ce phénomène (utilisant la corrélation et la dimension de Kaplan-Yorke) qui permet de le relier à l’accumulation de particules dans des régions de l’écoulement filamenteuses fortement déformées produisant des grappes de dimension fractale faiblement supérieure à 1. À plus grande échelle, les particules subissent une ségrégation de type turbophorétique dans la direction non-homogéne de l'écoulement. En effet, nos résultats indiquent que la distribution des particules est fortement liée aux structures moyennes de l’écoulement de type turbulent. En raison de la turbophorèse, les profils de densité moyenne atteignent leur maximum dans les régions où la diffusivité turbulente est la plus faible. L'inhomogénéité à grande échelle de la distribution des particules est interprétée dans le cadre d'un modèle dérivé dans la limite d'inertie des particules, petite mais finie. Les caractéristiques qualitatives de différents observables (telles que L'écart quadratique moyen de la distribution des particules par rapport à la distribution uniforme) sont, dans une large mesure, indépendantes de l'élasticité du l’écoulement. Quand celle-ci est augmentée, on constate cependant que cette dernière diminue légèrement le degré global moyen de mélange turbophorétique. / Laboratory experiments show that, even in very dilute solutions, the interaction of polymers with fluid flows can dramatically change the properties of turbulent flows or, if the flow is laminar, can trigger a new sort of irregular motion named “elastic turbulence”. Flows in such a dynamical regime are promising for enhancing mixing efficiency in microfluidic applications, which often involve the presence of suspended finite-size impurities, like small and heavy solid particles. The understanding of particle dispersion in high-Reynolds number flows of Newtonian, as well as non-Newtonian, fluids were addressed by previous investigations, and it is a subject of interest both at a fundamental level and for applications, e.g., environmental or industrial ones. However, the dynamics of particles in elastic turbulent flows are still quite unexplored.The present study aims at investigating the aggregation properties of pointlike material particles (heavier than the carrying fluid) in viscoelastic fluids in elastic turbulence conditions (i.e. in the limit of vanishing fluid inertia and large elasticity). We carry out extensive direct numerical simulations of the periodic Kolmogorov mean shear flow of two-dimensional dilute polymer solutions described by the Oldroyd-B model. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the underlying flow structure. Our analysis reveals that particles are preferentially clustered in regions of instantaneously maximally stretched polymers. The intensity of such a phenomenon depends on the interplay, parametrized by the Stokes number, between the particle inertia and the typical time scale associated with the elastic turbulence flow, and is the largest for intermediate values of particle inertia.In particular, it is shown that the preferential concentration of inertial particle suspensions in such turbulent-like flows follow from the dissipative nature of their dynamics. We provide a quantitative characterization of this phenomenon (using correlation and Kaplan-Yorke dimension) that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of fractal dimension slightly above 1.At larger scales, particles are found to undergo turbophoretic-like segregation along the non-homogeneity direction of the flow. Indeed, our results indicate that the particle distribution is strongly related to the mean turbulent-like structures of the flow. As an effect of turbophoresis, average density profiles peak in the regions of lowest turbulent eddy diffusivity. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables (such as root-mean-square deviation of the particle distribution, relative to the uniform one) are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.
2

Turbulences

Mordant, Nicolas 05 November 2009 (has links) (PDF)
Ce document est une synthèse de mes travaux de recherche en Physique qui s'articule selon trois axes: turbulence hydrodynamique, magnétohydrodynamique et turbulence d'onde. J'ai développé des techniques de mesure originales destinées à l'analyse lagrangienne de la turbulence hydrodynamique: il s'agit de suivre le mouvement de particules entraînées par un écoulement à haut nombre de Reynolds. Malgré le fait que la statistique de vitesse Lagrangienne soit gaussienne avec une décorrélation exponentielle, la modélisation de l'écoulement par une équation de Langevin est insuffisante à cause la très forte intermittence de la vitesse Lagrangienne. Celle-ci se traduit en particulier par un distribution fortement non gaussienne de l'accélération. En comparant les données expérimentales avec un modèle de marche aléatoire multifractale, nous avons mis en évidence le lien entre corrélations temporelles longues de l'amplitude de l'accélération et les propriétés statistiques d'intermittence. Une description multifractale suggère par ailleurs une certaine universalité de l'intermittence Lagrangienne entre différents écoulements expérimentaux ou numériques. Les mêmes techniques expérimentales sont appliquées à l'étude de la dynamique de particules inertielles. Cela permet en particulier d'améliorer la modélisation des effets d'inertie et de taille finie dans les simulations numériques. Finalement, j'analyse le lien entre le mouvement des particules de fluide et les propriétés de transport de scalaire passif. Je participe également à la collaboration VKS dont le but est l'étude expérimentale de l'effet dynamo, c'est-à-dire la génération d'un champ magnétique par le mouvement d'un fluide conducteur (du sodium liquide dans notre cas). Nous avons mis en évidence cet effet en 2006 et montré l'existence de régimes dynamiques du champ magnétique qui, pour certains, ressemblent fortement aux renversements du champ magnétique terrestre. Nous avons montré que les conditions aux limites jouent un rôle crucial. Les régimes dynamiques correspondent au comportement attendu par des systèmes dynamiques de basse dimension malgré le fait que l'écoulement est fortement turbulent et fait donc intervenir un grand nombre de degrés de liberté. Pour étudier la saturation de la croissance du champ dynamo, nous avons mis en oeuvre à l'ENS Paris, une expérience dans le gallium dans laquelle nous étudions l'effet d'un champ magnétique élevé sur un écoulement turbulent. Les effets de freinage magnétique ont été mis en évidence. Finalement, j'ai développé récemment une expérience de turbulence d'onde. La turbulence d'onde présente des ressemblances phénoménologiques avec la turbulence hydrodynamique, avec l'avantage d'une théorie statistique: la turbulence faible. Nous étudions expérimentalement les vibrations d'une tôle mince en acier inoxydable. Une technique de profilométrie par transformée de Fourier à haute vitesse permet de mesurer l'évolution temporelle de la déformation de la plaque résolue à la fois en temps et en espace. Les propriétés statistiques de ces vibrations sont en désaccord quantitatif avec la théorie mais la phénoménologie semble similaire. Ces nouvelles mesures ouvrent de nombreuses perspectives d'interaction avec les théoriciens de la turbulence d'onde.
3

Transport et déposition des particules inertielles dans une fracture à rugosité périodique

Nizkaya, Tatiana 01 October 2012 (has links) (PDF)
Il est bien connu que les particules inertielles dans un écoulement périodique ont tendance à se focaliser sur des trajectoires privilégiées. Le but de ce travail de thèse est d'étudier l'influence de cette focalisation sur le transport et la sédimentation de particules dans une fracture plane à rugosité périodique. Tout d'abord, un écoulement monophasique dans une fracture est analysé asymptotiquement dans le cas de faible rugosité. Les résultats classiques de la théorie de la lubrification inertielle sont généralisés au cas de fractures avec des parois asymétriques. Les corrections non linéaires à la loi de Darcy sont calculées explicitement en fonction des facteurs géométriques de la fracture. Le transport de particules dans une fracture horizontal est étudié asymptotiquement dans le cas de particules de faible inertie. Les particules se focalisent sur une trajectoire attractrice, si le débit d'écoulement est assez fort par rapport à la gravité. Un diagramme complet de focalisation a été obtenu, qui prédit l'existence de l'attracteur en fonction du nombre de Froude et des facteurs géométriques de la fracture. Les paramètres quantitatifs du transport ont été calculés également. L'influence de la force de portance sur la migration de particules a été étudiée également. Dans un canal vertical, la portance (provoquée par la gravité) modifie le nombre d'attracteurs et leurs positions. En absence de gravité, la portance peut provoquer une dynamique chaotique des particules. En outre, le captage des particules par une paire de tourbillons a été étudié. Le diagramme d'accumulation obtenu démontre que toute paire de tourbillons peut être un piège à particules.
4

Particle collisions in turbulent flows

Vosskuhle, Michel 13 December 2013 (has links) (PDF)
Cette thèse est consacrée au mécanisme conduisant à des taux de collisions importants dans les suspensions turbulentes de particules inertielles. Le travail a été effectué en suivant numériquement des particules, par simulations directes des équations de Navier-Stokes, et également par étude de modèles simplifiés. Les applications de ce domaine sont nombreuses aussi bien dans un contexte industriel que naturel (astrophysique, géophysique). L'approximation des collisions fantômes (ACF), souvent utilisée pour déterminer les taux de collision numériquement, consiste à compter dans une simulation, le nombre de fois que la distance entre les centres de deux particules devient plus faible qu'une distance seuil. Plusieurs arguments théoriques suggéreraient que cette approximation conduit à une surestimation du taux de collision. Cette thèse fournit non seulement une estimation quantitative de cette surestimation, mais également une compréhension détaillée des mécanismes des erreurs faites par l'ACF. Nous trouvons qu'une paire de particules peut subir des collisions répétées avec une grande probabilité. Ceci est relié à l'observation que, dans un écoulement turbulent, certaines paires de particules peuvent rester proches pendant très longtemps. Une deuxième classe de résultats obtenus dans cette thèse a permis une compréhension quantitative des très forts taux de collisions souvent observés. Nous montrons que lorsque l'inertie des particules n'est pas très petite, l'effet " fronde/caustiques ", à savoir, l'éjection de particules par des tourbillons intenses, est responsable du taux de collision élevé. En comparaison, la concentration préférentielle de particules dans certaines régions de l'espace joue un rôle mineur.
5

Particle collisions in turbulent flows / Collisions des particules dans des écoulements turbulents

Vosskuhle, Michel 13 December 2013 (has links)
Cette thèse est consacrée au mécanisme conduisant à des taux de collisions importants dans les suspensions turbulentes de particules inertielles. Le travail a été effectué en suivant numériquement des particules, par simulations directes des équations de Navier–Stokes, et également par étude de modèles simplifiés. Les applications de ce domaine sont nombreuses aussi bien dans un contexte industriel que naturel (astrophysique, géophysique). L’approximation des collisions fantômes (ACF), souvent utilisée pour déterminer les taux de collision numériquement, consiste à compter dans une simulation, le nombre de fois que la distance entre les centres de deux particules devient plus faible qu’une distance seuil. Plusieurs arguments théoriques suggéreraient que cette approximation conduit à une surestimation du taux de collision. Cette thèse fournit non seulement une estimation quantitative de cette surestimation, mais également une compréhension détaillée des mécanismes des erreurs faites par l’ACF. Nous trouvons qu’une paire de particules peut subir des collisions répétées avec une grande probabilité. Ceci est relié à l’observation que, dans un écoulement turbulent, certaines paires de particules peuvent rester proches pendant très longtemps. Une deuxième classe de résultats obtenus dans cette thèse a permis une compréhension quantitative des très forts taux de collisions souvent observés. Nous montrons que lorsque l’inertie des particules n’est pas très petite, l’effet « fronde/caustiques », à savoir, l’éjection de particules par des tourbillons intenses, est responsable du taux de collision élevé. En comparaison, la concentration préférentielle de particules dans certaines régions de l’espace joue un rôle mineur. / This thesis is devoted to the mechanisms leading to strong collision rates of inertial particles in turbulent suspensions. Our work is based on simulating the motion of particles, using both direct numerical simulations of the Navier–Stokes equations, and a simpler model (kinematic simulations). This subject is important for many applications, in industrial as well as natural (astrophysical, geophysical) contexts. We revisit the ghost collision approximation (GCA), widely used to determine the rate of collisions in numerical simulations, which consists in counting how many times the centers of two particles come within a given distance. Theoretical arguments suggested that this approximation leads to an overestimate of the real collision rate. This work provides not only a quantitative description of this overestimate, but also a detailed understanding of the error made using the GCA. We find that a given particle pair may undergo multiple collisions with a relatively high probability. This is related to the observation that in turbulent flows, particle pairs may stay close for a very long time. We have provided a full quantitative characterization of the time spent together by pairs of particles. A second class of results obtained in this thesis concerns a quantitative understanding of the very strong collision rates often observed. We demonstrate that when the particle inertia is not very small, the “sling/caustics ” effect, i.e., the ejection of particles from energetic vortices in the flow, is responsible for the high collision rates. The preferential concentration of particles in some regions of space plays in comparison a weaker role.
6

Transport and deposition of inertial particles in a fracture with periodic corrugation / Transport et déposition des particules inertielles dans une fracture à rugosité périodique

Nizkaya, Tatiana 01 October 2012 (has links)
Il est bien connu que les particules inertielles dans un écoulement périodique ont tendance à se focaliser sur des trajectoires privilégiées. Le but de ce travail de thèse est d'étudier l'influence de cette focalisation sur le transport et la sédimentation de particules dans une fracture plane à rugosité périodique. Tout d'abord, un écoulement monophasique dans une fracture est analysé asymptotiquement dans le cas de faible rugosité. Les résultats classiques de la théorie de la lubrification inertielle sont généralisés au cas de fractures avec des parois asymétriques. Les corrections non linéaires à la loi de Darcy sont calculées explicitement en fonction des facteurs géométriques de la fracture. Le transport de particules dans une fracture horizontal est étudié asymptotiquement dans le cas de particules de faible inertie. Les particules se focalisent sur une trajectoire attractrice, si le débit d'écoulement est assez fort par rapport à la gravité. Un diagramme complet de focalisation a été obtenu, qui prédit l'existence de l'attracteur en fonction du nombre de Froude et des facteurs géométriques de la fracture. Les paramètres quantitatifs du transport ont été calculés également. L'influence de la force de portance sur la migration de particules a été étudiée également. Dans un canal vertical, la portance (provoquée par la gravité) modifie le nombre d'attracteurs et leurs positions. En absence de gravité, la portance peut provoquer une dynamique chaotique des particules. En outre, le captage des particules par une paire de tourbillons a été étudié. Le diagramme d'accumulation obtenu démontre que toute paire de tourbillons peut être un piège à particules / It is well-known that inertial particles tend to focus on preferential trajectories in periodic flows. The goal of this thesis was to study the joint effect of particle focusing and sedimentation on their transport through a model 2D fracture with a periodic corrugation. First, single-phase flow though the fracture has been considered: the classical results of the inertial lubrication theory are revisited in order to include asymmetric fracture geometries. Cubic corrections to Darcy's law have been found analytically and expressed in terms of two geometric factors, describing channel geometry. For weakly-inertial particles in a horizontal channel it has been shown that, when inertia is strong enough to balance out the gravity forces, particles focus to some attracting trajectory inside the channel. The full trapping diagram is obtained, that predicts the existence of such attracting trajectory regime depending on the Froude number and on geometric factors. Numerical simulations confirm the asymptotic results for particles with small response times. The influence of the lift force on particle migration has also been studied. In a vertical channel the lift is induced by gravity and leads to complex trapping diagrams. In the absence of gravity the lift is caused by inertial lead/lag of particles and can lead to chaotic particle dynamics. Finally, for dust particles in a vortex pair it has been shown that particles can be trapped into one or two equilibrium points in a reference frame rotating with the vortices. A full trapping diagram has been obtained, showing that any pair of vortices can trap particles, independently of their strength ratio and the direction of rotation
7

Particle dynamics in turbulence : from the role of inhomogeneity and anisotropy to collective effects / Dynamiques des particules dans la turbulence : la rôle de l'inhomogeneité, l'anisotropie, et les effets collectifs

Huck, Peter Dearborn 06 December 2017 (has links)
La turbulence est connue pour sa capacité à disperser efficacement de la matière, que ce soit des polluantes dans les océans ou du carburant dans les moteurs à combustion. Deux considérations essentielles s’imposent lorsqu’on considère de telles situations. Primo, l’écoulement sous-jacente pourrait avoir une influence non-négligeable sur le comportement des particules. Secundo, la concentration locale de la matière pourrait empêcher le transport ou l’augmenter. Pour répondre à ces deux problématiques distinctes, deux dispositifs expérimentaux ont été étudiés au cours de cette thèse. Un premier dispositif a été mis en place pour étudier l’écoulement de von Kàrmàn, qui consiste en une enceinte fermé avec de l’eau forcé par deux disques en contra-rotation. Cette écoulement est connu pour être très turbulent, inhomogène, et anisotrope. Deux caméras rapides ont facilité le suivi Lagrangien des particules isodenses avec l’eau et petites par rapport aux échelles de la turbulence. Ceci a permis une étude du bilan d’énergie cinétique turbulente qui est directement relié aux propriétés de transport. Des particules plus lourdes que l’eau ont aussi été étudiées et montrent le rôle de l’anisotropie de l’écoulement dans la dispersion des particules inertielles. Un deuxième dispositif, un écoulement de soufflerie ensemencé avec des gouttelettes d’eau micrométriques a permis une étude de l’effet de la concentration locale de l’eau sur la vitesse de chute des gouttelettes grâce à une montage préexistant. Un modèle basé sur des méthodes théorique d'écoulements multiphasiques a été élaboré enfin de prendre en compte les effets collectifs de ces particules sedimentant dans un écoulement turbulent. Les résultats théoriques et expérimentaux mettent en évidence le rôle de la polydispersité et du couplage entre les deux phases dans l’augmentation de la sédimentation des gouttelettes. / Turbulence is well known for its ability to efficiently disperse matter, whether it be atmospheric pollutants or gasoline in combustion motors. Two considerations are fundamental when considering such situations. First, the underlying flow may have a strong influence of the behavior of the dispersed particles. Second, the local concentration of particles may enhance or impede the transport properties of turbulence. This dissertation addresses these points separately through the experimental study of two different turbulent flows. The first experimental device used is the so-called von K\'arm\'an flow which consists of an enclosed vessel filled with water that is forced by two counter rotating disks creating a strongly inhomogeneous and anisotropic turbulence. Two high-speed cameras permitted the creation a trajectory data base particles that were both isodense and heavier than water but were smaller than the smallest turbulent scales. The trajectories of this data base permitted a study of the turbulent kinetic energy budget which was shown to directly related to the transport properties of the turbulent flow. The heavy particles illustrate the role of flow anisotropy in the dispersive dynamics of particles dominated by effects related to their inertia. The second flow studied was a wind tunnel seeded with micrometer sized water droplets which was used to study the effects of local concentration of the settling velocities of these particles. A model based on theoretical multi-phase methods was developed in order to take into account the role of collective effects on sedimentation in a turbulent flow. The theoretical results emphasize the role of coupling between the underlying flow and the dispersed phase.
8

Clustering of inertial sub-Kolmogorov particles : structure of clusters and their dynamics / Concentration préférentielle de particules inertielles : la structure et la dynamique de clusters

Sumbekova, Sholpan 15 December 2016 (has links)
Cette thèse étudie les phénomènes de concentration préférentielle et de sédimentation de particules inertielles transportées dans un écoulement turbulent. Pour cela, des expériences ont été menées en soufflerie dans une turbulence engendrée en aval d’une grille active et ensemencée avec des gouttelettes d'eau. La concentration préférentielle se manifeste par la ségrégation spatiale des particules qui bien qu’initialement ensemencée de façon homogène, tendent à se regrouper en amas, laissant en déplétion d’autres zones de l’écoulement. Un effort particulier a été consacré à séparer les mécanismes liés à l’inertie des particules, à la turbulence et aux effets collectifs impactant la formation des amas et modifiant la vitesse de sédimentation des particules. Quatre principaux paramètres non-dimensionnels ont été variés afin d’établir le rôle spécifique de chacun d’entre eux sur les processus de concentration préférentielle et de sédimentation : le nombre de Rouse $Ro $, représentant le rapport de la vitesse de sédimentation des particules à la vitesse fluctuante de l’écoulement; le nombre de Stokes $St$, quantifiant l'inertie des particules comme le rapport entre le temps de réponse des particules et le temps dissipatif de l’écoulement; le nombre de Reynolds $ RE_lambda$ représentant le degré de turbulence et enfin la fraction volumique de la phase dispersée $phi_v$.Deux techniques expérimentales (suivi Lagrangien des particules et interférométrie à phase Doppler) ont été utilisées pour l'acquisition des données et pour le diagnostic de la concentration préférentielle et de la sédimentation des gouttelettes dispersées. Le suivi Lagrangien de particules a été réalisé par visualisation à haute vitesse cadence des gouttelettes dispersées dans une nappe de laser. Cela donne accès aux statistiques simultanées de la distribution spatiale des particules et de leur vitesse. La niveau de clustering a été quantifié à l’aide de tessélation de Voronoï. Nous établissons des lois d’échelles quantitatives caractérisant la dépendance du degré de clustering et de la géométrie des amas en fonction des paramètres de l’étude ($St$, $Re_lambda$ et $ phi_v$. Ces lois d’échelles indiquent une forte influence de $Re_lambda$ et de $phi_v$, mais un faible effet de $St$. Ce résultat est cohérent avec un rôle dominant du mécanisme « sweep-stick » comme origine de la concentration préférentielle, tel que proposé par Vassilicos. En outre, l'analyse conditionnelle des vitesses de sédimentation des particules en fonction de leur appartenance ou non à des amas montre que les zones à fortes concentration tendent à sédimenter plus rapidement que les zones peu concentrées, suggérant un possible rôle des effets collectifs dans l’augmentation de la vitesse de chute. Les mesures par interférométrie de phase Doppler ont ensuite permis d’analyser plus en détail les statistiques de vitesse et de concentration de particules conditionnées à la taille des particules. Ces mesures montrent une augmentation de la vitesse de sédimentation pour les particules de petits diamètres, en accord avec des études précédentes. En revanche, la sédimentation est ralentie pour les particules de plus grand diamètre. Ceci indique une subtile intrication de plusieurs mécanismes possibles affectant la sédimentation turbulente de particules. / This PhD thesis investigates the phenomena of preferential concentration and settling of sub-Kolmogorov inertial particles transported in a turbulent flow. To this end, experiments have been carried out in active-grid-generated turbulence in a wind-tunnel, seeded with water droplets. Preferential concentration manifests itself as the emergence of spatial segregation of the particles, which where initially homogeneously seeded in the carrier flow, leading to clusters and voids. A particular effort has been put in disentangling the roles of particles inertia, of turbulence and of collective effects on the emergence of clustering and the modification of settling velocity and in investigating the interplay between clustering and settling. Four main non-dimensional parameters have been varied to establish the role of each in the clustering process and on the settling of the particles: the Rouse number $Ro$, representing the ratio of the settling velocity of the particles to the fluctuating velocity of the fluid ; the Stokes number $St$ , quantifying particle inertia as the ratio of the particle response time to the flow dissipative time scale ; the Reynolds number $Re_lambda$ representing the degree of turbulence and the volume fraction $phi_v$ representing the concentration of the particles in the two-phase flow.Two experimental techniques (Lagrangian Particle Tracking and Phase Doppler Interferometry) are used to acquire data and diagnose the clustering and settling properties of the dispersed droplets.2D-Lagrangian Particle Tracking has been performed using high-speed visualization of the dispersed droplets in a laser sheet. This gives access to simultaneous statistics of particles spatial distribution and velocity. Clustering has been quantified using Voronoï tessellation and quantitative scalings on the dependency of clustering intensity and clusters dimensions on $St$, $Re_lambda$ and $phi_v$ are found. They show a strong influence of $Re_lambda$ and volume fraction $phi_v$ but a weak effect of $St$. This finding is consistent with a leading role of the “sweep-stick” mechanism in the clustering process, as proposed by Vassilicos. Furthermore, conditional analysis of the velocities of particles within clusters and voids has been performed showing that clusters tend to settle faster than voids, pointing to the role of collective effects in the enhancement of settling.Phase Doppler Interferometry has then been used to further analyse velocity statistics, and particle concentration field conditioned on particle diameter. Enhancement of the settling velocity for small diameters is observed, in agreement with previous studies. On the contrary, for larger particles settling velocity is found to be hindered. This indicates a subtle intrication of several possible mechanisms affecting the settling, including preferential sweeping, loitering and collective effects.

Page generated in 0.0835 seconds