• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of fluid-solid interaction (FSI)

De La Peña-Cortes, Jesus Ernesto January 2018 (has links)
This work extends a previously developed finite-volume overset-grid fluid flow solver to enable the characterisation of rigid-body-fluid interaction problems. To this end, several essential components have been developed and blended together. The inherent time-dependent nature of fluid-solid interaction problems is captured through the laminar transient incompressible Navier-Stokes equations for the fluid, and the Euler-Newton equations for rigid-body motion. First and second order accurate time discretisation schemes have been implemented for the former, whereas second and third order accurate time discretisation schemes have been made available for the latter. Without doubt the main advantage the overset-grid method offers regarding moving entities is the avoidance of the time consuming grid regeneration step, and the resulting grid distortion that can often cause numerical stability problems in the solution of the flow equations. Instead, body movement is achieved by the relative motion of a body fitted grid over a suitable background mesh. In this case, the governing equations of fluid flow are formulated using a Lagrangian, Eulerian, or hybrid flow description via the Arbitrary Lagrangian-Eulerian method. This entails the need to guarantee that mesh motion shall not disturb the flow field. With this in mind, the space conservation law has been hard-coded. The compliance of the space conservation law has the added benefit of preventing spurious mass sources from appearing due to mesh deformation. In this work, two-way fluid-solid interaction problems are solved via a partitioned approach. Coupling is achieved by implementing a Picard iteration algorithm. This allows for flexible degree of coupling specificationby the user. Furthermore, if strong coupling is desired, three variants of interface under-relaxation can be chosen to mitigate stability issues and to accelerate convergence. These include fixed, or two variants of Aitken’s adaptive under-relaxation factors. The software also allows to solve for one-way fluid-solid interaction problems in which the motion of the solid is prescribed. Verification of the core individual components of the software is carried out through the powerful method of manufactured solutions (MMS). This purely mathematically based exercise provides a picture of the order of accuracy of the implementation, and serves as a filter for coding errors which can be virtually impossible to detect by other means. Three instances of one-way fluid-solid interaction cases are compared with simulation results either from the literature, or from the OpenFOAM package. These include: flow within a piston cylinder assembly, flow induced by two oscillating cylinders, and flow induced by two rectangular plates exhibiting general planar motion. Three cases pertaining to the class of two-way fluid-interaction problems are presented. The flow generated by the free fall of a cylinder under the action of gravity is computed with the aid of an intermediate ‘motion tracking’ grid. The solution is compared with the one obtained using a vorticity based particle solver for validation purposes. Transverse vortex induced vibrations (VIV) of a circular cylinder immersed in a fluid, and subject to a stream are compared with experimental data. Finally, the fluttering motion of a rectangular plate under different scenarios is analysed.
2

Géante éolienne offshore (GEOF) : analyse dynamique des pales flexibles en grandes transformations / Large scale offshore wind turbines (GEOF) : dynamic analysis of flexible blades undergoing large displacements and large rotations

Boujelben, Abir 15 November 2018 (has links)
L’objectif de ce travail porte sur le développement d’un modèle d’interaction fluide-structure adapté à la dynamique des éoliennes de grandes tailles avec des pales flexibles qui se déforment de manière significative sous l’effet de la pression exercée par le vent. Le modèle développé est basé sur une approche efficace d’IFS partitionnée pour un fluide incompressible et non visqueux en interaction avec une structure flexible soumise a des grandes transformations. Il permet de fournir une meilleure estimation de la charge aérodynamique et de la réponse dynamique associée du système (pales, mat, attachements, câbles) avec un temps de calcul raisonnable et pour des simulations sur des longues périodes. Pour la modélisation structurale, un élément fini de type solide 3D est développé pour l’étude dynamique des pales d’éolienne soumises à des grands déplacements et des grandes rotations. Une amélioration du comportement en flexion est proposée par l’introduction des degrés de liberté en rotation et l’enrichissement du champ de déplacements afin de décrire plus précisément la flexibilité des pales. Cet élément solide est apte de capter des modes de hautes fréquences qui peuvent s’avérer néfastes pour la stabilité du calcul. Deux techniques sont donc proposées pour les contrôler : la régularisation de la matrice masse et le développement des schémas d’intégration robustes de conservation et de dissipation d’énergie. Les chargements aérodynamiques sont modélisés en utilisant la Panel Method. Il s’agit d’une méthode aux frontières, relativement rapide par rapport à la CFD mais suffisamment précise pour calculer la distribution de la pression exercée sur la pale. Les modèles fluide et structure interagissent via un algorithme de couplage partitionné itératif dans lequel des considérations particulières sont prises en compte dans le contexte des grandes transformations. Dans un effort visant à instaurer un indicateur de fatigue dans la méthodologie proposée, des câbles précontraints sont introduits reliant le mat de l’éolienne au support. Une nouvelle formulation complémentaire en termes de contraintes est ainsi développée pour l’analyse dynamique des câbles 3D en comportement élasto-visco-plastique. Chaque méthode proposée a été d’abord validée sur des cas tests pertinents. Par la suite, des simulations numériques d’éoliennes avec des pales flexibles sont effectuées en vue d’affiner la compréhension de leur comportement dynamique et l’intérêt que la flexibilité des pales peut apporter à leur fonctionnement. / In this work, a numerical model of fluid-structure interaction is developed for dynamic analysis of giant wind turbines with flexible blades that can deflect significantly under wind loading. The model is based on an efficient partitioned FSI approach for incompressible and inviscid flow interacting with a flexible structure undergoing large transformations. It seeks to provide the best estimate of true design aerodynamic load and the associated dynamic response of such system (blades, tower, attachments, cables). To model the structure, we developed a 3D solid element to analyze geometrically nonlinear statics and dynamics of wind turbine blades undergoing large displacements and rotations. The 3D solid bending behavior is improved by introducing rotational degrees of freedom and enriching the approximation of displacement field in order to describe the flexibility of the blades more accurately. This solid iscapable of representing high frequencies modes which should be taken under control. Thus, we proposed a regularized form of the mass matrix and robust time-stepping schemes based on energy conservation and dissipation. Aerodynamic loads are modeled by using the 3D Vortex Panel Method. Such boundary method is relatively fast to calculate pressure distribution compared to CFD and provides enough precision. The aerodynamic and structural parts interact with each other via a partitioned coupling scheme with iterative procedure where special considerations are taken into account for large overall motion. In an effort to introduce a fatigue indicator within the proposed framework, pre-stressed cables are added to the wind turbine, connecting the tower to the support and providing more stability. Therefore, a novel complementary force-based finite element formulation is constructed for dynamic analysis of elasto-viscoplastic cables. Each of theproposed methods is first validated with differents estexamples.Then,several numerical simulations of full-scale wind turbines are performed in order to better understand its dynamic behavior and to eventually optimize its operation.

Page generated in 0.126 seconds