Spelling suggestions: "subject:"massive flow control"" "subject:"assive flow control""
1 |
Aerodynamics and performance enhancement of a ground-effect diffuserEhirim, Obinna Hyacinth January 2018 (has links)
This study involved experimental and equivalent computational investigations into the automobile-type 3―D flow physics of a diffuser bluff body in ground-effect and novel passive flow-control methods applied to the diffuser flow to enhance the diffuser’s aerodynamic performance. The bluff body used in this study is an Ahmed-like body employed in an inverted position with the slanted section together with the addition of side plates along both sides forming the ramped diffuser section. The first part of the study confirmed reported observations from previous studies that the downforce generated by the diffuser in proximity to a ground plane is influenced by the peak suction at the diffuser inlet and subsequent static pressure-recovery towards the diffuser exit. Also, when the bluff body ride height is gradually reduced from high to low, the diffuser flow as indicated by its force curve and surface flow features undergoes four distinct flow regimes (types A to D). The types A and B regimes are reasonably symmetrical, made up of two low-pressure core longitudinal vortices travelling along both sides of the diffuser length and they increase downforce and drag with reducing ride height. However, below the ride heights of the type B regime, types C and D regimes are asymmetrical because of the breakdown of one vortex; consequently a significant loss in downforce and drag occurs. The second part of the study involved the use ― near the diffuser exit ― of a convex bump on the diffuser ramp surface and an inverted wing between the diffuser side plates as passive flow control devices. The modification of the diffuser geometry with these devices employed individually or in combination, induced a second-stage pressure-drop and recovery near the diffuser exit. This behaviour was due to the radial pressure gradient induced on the diffuser flow by the suction surface ii curvature of the passive devices. As a result of this aerodynamic phenomenon, the diffuser generated across the flow regimes additional downforce, and a marginal increase in drag due to the profile drag induced by the devices.
|
2 |
The Effect of Multiple Scales on Fractal-Grid-Generated TurbulenceOmilion, Alexis Kathleen 11 June 2018 (has links)
No description available.
|
3 |
Computational studies of passive vortex generators for flow controlvon Stillfried, Florian January 2009 (has links)
<p>Many flow cases in fluid dynamics face undesirable flow separation due torising static pressure on wall boundaries. This occurs e.g. due to geometry as ina highly curved turbine inlet duct or e.g. on flow control surfaces such as wingtrailing edge flaps within a certain angle of attack range. Here, flow controldevices are often used in order to enhance the flow and delay or even totallyeliminate flow separation. Flow control can e.g. be achieved by using passiveor active vortex generators (VG) that enable momentum mixing in such flows.This thesis focusses on passive VGs, represented by VG vanes that are mountedupright on the surface in wall-bounded flows. They typically have an angle ofincidence to the mean flow and, by that, generate vortex structures that in turnallow for the desired momentum mixing in order to prevent flow separation.A statistical VG model approach, developed by KTH Stockholm and FOI,the Swedish Defence Research Agency, has been evaluated computationally.Such a statistical VG model approach removes the need to build fully resolvedthree-dimensional geometries of VGs in a computational fluid dynamics mesh.Usually, the generation of these fully resolved geometries is rather costly interms of preprocessing and computations. By applying this VG model, thecosts reduce to computations without VG effects included. Nevertheless, theVG model needs to be set up in order to define the modelled VG geometry inan easy and fast preprocessing step. The presented model has shown sensitivityfor parameter variations such as the modelled VG geometry and the VG modellocation in wall-bounded zero pressure gradient and adverse pressure gradientflows on a flat plate, in a diffuser, and on an airfoil with its high-lift systemextracted. It could be proven that the VG model qualitatively describes correcttrends and tendencies for these different applications.</p>
|
4 |
Vortex Generator Jet Flow Control in Highly Loaded CompressorsBaiense, Jr., Joao C 28 July 2014 (has links)
"A flow control method for minimizing losses in a highly loaded compressor blade was analyzed. Passive and active flow control experiments with vortex generator jets were conducted on a seven blade linear compressor cascade to demonstrate the potential application of passive flow control on a highly loaded blade. Passive flow control vortex generator jets use the pressure distribution generated by air flow over the blade profile to drive jets from the pressure side to the suction side. Active flow control was analyzed by pressuring the blade plenum with an auxiliary compressor unit. Active flow control decreased profile losses by approximately 37 % while passive flow control had negligible impact on the profile loss of a highly loaded blade. Passive flow control was able to achieve a jet velocity ratio, jet velocity to upstream velocity, of 0.525. The success of active flow control with a velocity ratio of 0.9 suggests there is potential for passive flow control to be effective. The research presented in this thesis is motivated by the potential savings in the applications of passive flow control in gas turbine axial compressors by increasing the aerodynamic load of each stage. Increased stage loading that is properly controlled can reduce the number of stages required to achieve the desired pressure compression ratio."
|
5 |
The application of passive flow control to bileaflet mechanical heart valve leakage jetsMurphy, David Wayne 10 November 2009 (has links)
Bileaflet mechanical heart valves (BMHVs), though a life-saving tool in treating heart valve disease, are often associated with serious complications, including a high risk of hemolysis, platelet activation, and thromboembolism. One likely cause of this hyper-coagulative state is the nonphysiologic levels of stress experienced by the erythrocytes and platelets flowing through the BMHVs. Research has shown that the combination of shear stress magnitude and exposure time found in the highly transient leakage jet emanating from the b-datum gap during valve closure is sufficient to cause hemolysis and platelet activation. Regions of flow stasis in the valve vicinity may also allow activated platelets to aggregate and form thrombus.
This thesis addresses the hypothesis that passive flow control may have the potential to reduce flow-induced thrombogenicity by altering the fluid mechanics of bileaflet mechanical heart valves. To test this hypothesis, a steady model of the regurgitant b-datum line jet was developed and studied. This model served as a test bed for various vortex generator array designs. The fluid mechanics of the b-datum line jet model was investigated with flow visualization and particle image velocimetry. In vitro tests with whole human blood were performed with and without the vortex generators in order to determine how the presence of the passive flow control affected the propensity of the blood to form thrombus. An effort was then made to correlate the fluid mechanics of the jet model with the procoagulant potential results from the blood experiments. The effect of the vortex generators on the fluid mechanics of the valve under physiologic pulsatile
conditions was also investigated via flow visualization in the Georgia Tech Left Heart Simulator.
By studying a steady model of the regurgitant b-datum line jet, it was found, using an in vitro system with whole human blood, that the presence of vortex generators significantly decreased the blood's propensity for thrombus formation. The potential of applying passive flow control to cardiovascular hardware in order to mitigate the injurious effects of shear-induced platelet activation is thus demonstrated.
The investigation into the effect of vortex generators on the fluid mechanics of the b-datum line jet showed that the jet oscillated aperiodically and that the effect of the applied flow control was played out at both the scale of the chamber (large-scale) and on the scale of the vortex generator fins (small-scale). On the large scale, the presence of vortex generators appeared to decrease the magnitude or frequency of jet oscillation, thereby stabilizing the jet. After removing the effect of the large-scale oscillations via phase averaging, the effect of the vortex generators on the small scale was examined. On the small scale, the jet without flow control was found to have higher levels of velocity RMS, particularly on the jet periphery, and higher levels of Reynolds shear stress. It is proposed that the vortex generators effect this change by generating vorticity in the plane of the jet. This vorticity is theorized to stabilize the jet, delaying roll-up of the jet shear layer which occurs via the Kelvin-Helmholtz instability.
The method by which the vortex generators acted on the fluid mechanics of the steady jet system to decrease the blood's procoagulant potential was investigated via flow visualization and DPIV. The results from these studies implicate two possible mechanisms by which the vortex generators may act. First, the peak turbulent shear stresses in the jet were reduced by 10-20% with the application of vortex generators. Even if only a few platelets were activated in each passage through the valve, the cumulative effect of this difference in peak stresses after many passes would be greatly magnified. Thus, this reduction in turbulent shear stresses may be sufficient to explain the change seen in the blood's procoagulant potential with the application of passive flow control. It is suspected, though, that the second mechanism is dominant. The flow fields revealed that the presence of the vortex generators delayed or prevented the roll-up of the Kelvin-Helmholtz instability in the b-datum jet's shear layers into discrete vortices. By doing so, it is thought that opportunities for the interaction of activated and unactivated platelets entrained in these vortices were prevented, thereby inhibiting further propagation of the coagulation cascade. Even if the rate at which platelets were activated was similar for cases with and without flow control, it seems that the flow fields experienced by the platelets subsequent to activation can determine the level of procoagulant potential. Under the steady conditions observed in this experiment, the jet influenced by vortex generators was thus shown to induce significantly lower levels of procoagulant potential.
|
6 |
Conception and implementation of a hybrid vortex penalization method for solid-fluid-porous media : application to the passive control of incompressible flows / Conception et mise en oeuvre de méthodes vortex hybrides-frontières immergées pour des milieux solides-fluides-poreux. Application au contrôle passif d'écoulements.Mimeau, Chloé 07 July 2015 (has links)
Dans cette thèse nous mettons en oeuvre une méthode vortex hybride pénalisée (HVP) afin desimuler des écoulements incompressibles autour de corps non profilés dans des milieux complexessolides-fluides-poreux. Avec cette approche particulaire hybride, le phénomène de convection estmodélisé à l’aide d’une méthode vortex afin de bénéficier du caractère peu diffusif et naturel desméthodes particulaires. Un remaillage des particules est alors réalisé systématiquement sur unegrille cartésienne sous-jacente afin d’éviter les phénomènes de distorsion. D’autre part, les effetsdiffusifs et d’étirement ainsi que le calcul de la vitesse sont traités sur la grille cartésienne, àl’aide de schémas eulériens. Le traitement des conditions de bords aux parois de l’obstacle esteffectué à l’aide d’une technique de pénalisation, particulièrement bien adaptée au traitementde milieux solides-fluides-poreux.Cette méthode HVP est appliquée au contrôle passif d’écoulement. Cette étude de contrôleest effectuée respectivement en 2D et en 3D autour d’un demi-cylindre et d’un hémisphère parl’ajout d’un revêtement poreux à la surface de l’obstacle. La présence de cette couche poreusemodifiant la nature des conditions aux interfaces, permet de régulariser l’écoulement global etde diminuer la traînée aérodynamique de l’obstacle contrôlé. A travers des études paramétriquessur la perméabilité, l’épaisseur et la position du revêtement poreux, ce travail vise à identifier desdispositifs de contrôles efficaces pour des écoulements autour d’obstacles comme des rétroviseursautomobiles. / In this work we use a hybrid vortex penalization method (HVP) to simulate incompressibleflows past bluff bodies in complex solid-fluid-porous media. In this hybrid particle approach,the advection phenomenon is modeled through a vortex method in order to benefit from thenatural description of the flow supplied by particle methods and their low numerical diffusionfeatures. A particle remeshing is performed systematically on an underlying Cartesian grid inorder to prevent distortion phenomena. On the other hand, the viscous and stretching effects aswell as the velocity calculation are discretized on the mesh through Eulerian schemes. Finally,the treatment of boundary conditions is handled with a penalization method that is well suitedfor the treatment of solid-fluid-porous media.The HVP method is applied to passive flow control. This flow control study is realized pasta 2D semi-circular cylinder and a 3D hemisphere by adding a porous layer on the surface of thebody. The presence of such porous layer modifies the characteristics of the conditions at theinterfaces and leads to a regularization of the wake and to a decrease of the aerodynamic dragof the controlled obstacle. Through parametric studies on the permeability, the thickness andthe position of the porous coating, this works aims to identify efficient control devices for flowsaround obstacles like the rear-view mirrors of a ground vehicle.
|
7 |
Conception and implementation of a hybrid vortex penalization method for solid-fluid-porous media : application to the passive control of incompressible flows / Conception et mise en oeuvre de méthodes vortex hybrides-frontières immergées pour des milieux solides-fluides-poreux. Application au contrôle passif d'écoulements.Mimeau, Chloé 07 July 2015 (has links)
Dans cette thèse nous mettons en oeuvre une méthode vortex hybride pénalisée (HVP) afin desimuler des écoulements incompressibles autour de corps non profilés dans des milieux complexessolides-fluides-poreux. Avec cette approche particulaire hybride, le phénomène de convection estmodélisé à l’aide d’une méthode vortex afin de bénéficier du caractère peu diffusif et naturel desméthodes particulaires. Un remaillage des particules est alors réalisé systématiquement sur unegrille cartésienne sous-jacente afin d’éviter les phénomènes de distorsion. D’autre part, les effetsdiffusifs et d’étirement ainsi que le calcul de la vitesse sont traités sur la grille cartésienne, àl’aide de schémas eulériens. Le traitement des conditions de bords aux parois de l’obstacle esteffectué à l’aide d’une technique de pénalisation, particulièrement bien adaptée au traitementde milieux solides-fluides-poreux.Cette méthode HVP est appliquée au contrôle passif d’écoulement. Cette étude de contrôleest effectuée respectivement en 2D et en 3D autour d’un demi-cylindre et d’un hémisphère parl’ajout d’un revêtement poreux à la surface de l’obstacle. La présence de cette couche poreusemodifiant la nature des conditions aux interfaces, permet de régulariser l’écoulement global etde diminuer la traînée aérodynamique de l’obstacle contrôlé. A travers des études paramétriquessur la perméabilité, l’épaisseur et la position du revêtement poreux, ce travail vise à identifier desdispositifs de contrôles efficaces pour des écoulements autour d’obstacles comme des rétroviseursautomobiles. / In this work we use a hybrid vortex penalization method (HVP) to simulate incompressibleflows past bluff bodies in complex solid-fluid-porous media. In this hybrid particle approach,the advection phenomenon is modeled through a vortex method in order to benefit from thenatural description of the flow supplied by particle methods and their low numerical diffusionfeatures. A particle remeshing is performed systematically on an underlying Cartesian grid inorder to prevent distortion phenomena. On the other hand, the viscous and stretching effects aswell as the velocity calculation are discretized on the mesh through Eulerian schemes. Finally,the treatment of boundary conditions is handled with a penalization method that is well suitedfor the treatment of solid-fluid-porous media.The HVP method is applied to passive flow control. This flow control study is realized pasta 2D semi-circular cylinder and a 3D hemisphere by adding a porous layer on the surface of thebody. The presence of such porous layer modifies the characteristics of the conditions at theinterfaces and leads to a regularization of the wake and to a decrease of the aerodynamic dragof the controlled obstacle. Through parametric studies on the permeability, the thickness andthe position of the porous coating, this works aims to identify efficient control devices for flowsaround obstacles like the rear-view mirrors of a ground vehicle.
|
8 |
Computational studies of passive vortex generators for flow controlvon Stillfried, Florian January 2009 (has links)
Many flow cases in fluid dynamics face undesirable flow separation due torising static pressure on wall boundaries. This occurs e.g. due to geometry as ina highly curved turbine inlet duct or e.g. on flow control surfaces such as wingtrailing edge flaps within a certain angle of attack range. Here, flow controldevices are often used in order to enhance the flow and delay or even totallyeliminate flow separation. Flow control can e.g. be achieved by using passiveor active vortex generators (VG) that enable momentum mixing in such flows.This thesis focusses on passive VGs, represented by VG vanes that are mountedupright on the surface in wall-bounded flows. They typically have an angle ofincidence to the mean flow and, by that, generate vortex structures that in turnallow for the desired momentum mixing in order to prevent flow separation.A statistical VG model approach, developed by KTH Stockholm and FOI,the Swedish Defence Research Agency, has been evaluated computationally.Such a statistical VG model approach removes the need to build fully resolvedthree-dimensional geometries of VGs in a computational fluid dynamics mesh.Usually, the generation of these fully resolved geometries is rather costly interms of preprocessing and computations. By applying this VG model, thecosts reduce to computations without VG effects included. Nevertheless, theVG model needs to be set up in order to define the modelled VG geometry inan easy and fast preprocessing step. The presented model has shown sensitivityfor parameter variations such as the modelled VG geometry and the VG modellocation in wall-bounded zero pressure gradient and adverse pressure gradientflows on a flat plate, in a diffuser, and on an airfoil with its high-lift systemextracted. It could be proven that the VG model qualitatively describes correcttrends and tendencies for these different applications.
|
9 |
Numerická analýza bio-mimetického konceptu řízení proudu na povrchu křídla / Numerical analysis of bio-mimetic concept for active flow control on wing surfaceČermák, Jakub January 2017 (has links)
V této diplomové práci je provedena optimalizace profilu křídla vybaveného elastickou klapkou umístěnou na horní straně profilu. Optimalizační proces je proveden s vyžitím CFD prostředků, konkrétně URANS metody. V prvních kapitolách je popsána historie vývoje křídla vybaveného pohyblivými klapkami. Práce pokračuje popisem a zdůvodněním volby numerické metody. Vytvoření geometrie a výpočetní sítě je krátce popsáno. V práci je také prezentována validace a verifikace dané výpočetní metody. Případová studie je zaměřena na profil LS(1)-0417mod vybavený 20%, 30% a 40% dlouhou, pevnou kalpkou na různých úhlech náběhu. Aerodynamická účinnost společně s proudovým polem je analyzována. Je provedena nelineární pevnostní analýza s využitím MKP programu za účelem vyhodnocení ohybové tuhosti a deformovaného tvaru elastické klapky tak, aby byly splněný podmínky nutné pro automatické vychýlení.
|
Page generated in 0.0827 seconds