Spelling suggestions: "subject:"massive rectifier"" "subject:"assive rectifier""
1 |
Analysis Of A Wave Power System With Passive And Active RectificationWahid, Ferdus January 2020 (has links)
Wave energy converter (WEC) harnesses energy from the ocean to produce electrical power. The electrical power produced by the WEC is fluctuating and is not maximized as well, due to the varying ocean conditions. As a consequence, without any intermediate power conversion stage, the output power from the WEC can not be fed into the grid. To feed WEC output power into the grid, a two-stage power conversion topology is used, where the WEC output power is first converted into DCpower through rectification, and then a DC-AC converter (inverter) is used to supply AC power into the grid. The main motive of this research is to extract maximum electrical power from the WEC by active rectification and smoothing the power fluctuation of the wave energy converter through a hybrid energy storage system consisting of battery and flywheel. This research also illustrates active and reactive power injection to the grid according to load demand through a voltage source inverter.
|
2 |
Evaluation of power quality and common design concept for AC-DC converters in aircraftBrolund, Andreas January 2017 (has links)
This master thesis has been carried out in collaboration with Saab, Avionics Systems in Jönköping, Sweden, during the spring of 2017. The thesis investigates unidirectional rectifier topologies in aircraft and the focus has been on evaluating the power quality requirements according to the aircraft standards, in the course of the More Electric Aircraft concept. Both passive and active power factor correction topologies are considered, discussed and compared. Simulation models are designed in MATLAB/Simulink and the procedures are presented. A modular concept regarding components is discussed where different power supplies and loads are considered. The simulations present both a passive 12-pulse auto-transformer rectifier unit and an active Delta-switch rectifier fulfilling requirements for aircraft such as the total harmonic distortion of the supply current. In addition, the input power factor is close to unity and an efficiency greater than 97% is obtained. Lastly, future aspects of each topology are discussed and necessary improvements to obtain realistic simulation models are presented.
|
Page generated in 0.0431 seconds