• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localisation temps-réel d'un robot par vision monoculaire et fusion multicapteurs

Charmette, Baptiste 14 December 2012 (has links) (PDF)
Ce mémoire présente un système de localisation par vision pour un robot mobile circulant dans un milieu urbain. Pour cela, une première phase d'apprentissage où le robot est conduit manuellement est réalisée pour enregistrer une séquence vidéo. Les images ainsi acquises sont ensuite utilisées dans une phase hors ligne pour construire une carte 3D de l'environnement. Par la suite, le véhicule peut se déplacer dans la zone, de manière autonome ou non, et l'image reçue par la caméra permet de le positionner dans la carte. Contrairement aux travaux précédents, la trajectoire suivie peut être différente de la trajectoire d'apprentissage. L'algorithme développé permet en effet de conserver la localisation malgré des changements de point de vue importants par rapport aux images acquises initialement. Le principe consiste à modéliser les points de repère sous forme de facettes localement planes, surnommées patchs plan, dont l'orientation est connue. Lorsque le véhicule se déplace, une prédiction de la position courante est réalisée et la déformation des facettes induite par le changement de point de vue est reproduite. De cette façon la recherche des amers revient à comparer des images pratiquement identiques, facilitant ainsi leur appariement. Lorsque les positions sur l'image de plusieurs amers sont connues, la connaissance de leur position 3D permet de déduire la position du robot. La transformation de ces patchs plan est complexe et demande un temps de calcul important, incompatible avec une utilisation temps-réel. Pour améliorer les performances de l'algorithme, la localisation a été implémentée sur une architecture GPU offrant de nombreux outils permettant d'utiliser cet algorithme avec des performances utilisables en temps-réel. Afin de prédire la position du robot de manière aussi précise que possible, un modèle de mouvement du robot a été mis en place. Il utilise, en plus de la caméra, les informations provenant des capteurs odométriques. Cela permet d'améliorer la prédiction et les expérimentations montrent que cela fournit une plus grande robustesse en cas de pertes d'images lors du traitement. Pour finir ce mémoire détaille les différentes performances de ce système à travers plusieurs expérimentations en conditions réelles. La précision de la position a été mesurée en comparant la localisation avec une référence enregistrée par un GPS différentiel.
2

Localisation temps-réel d'un robot par vision monoculaire et fusion multicapteurs / Real-time robot location by monocular vision and multi-sensor fusion

Charmette, Baptiste 14 December 2012 (has links)
Ce mémoire présente un système de localisation par vision pour un robot mobile circulant dans un milieu urbain. Pour cela, une première phase d’apprentissage où le robot est conduit manuellement est réalisée pour enregistrer une séquence vidéo. Les images ainsi acquises sont ensuite utilisées dans une phase hors ligne pour construire une carte 3D de l’environnement. Par la suite, le véhicule peut se déplacer dans la zone, de manière autonome ou non, et l’image reçue par la caméra permet de le positionner dans la carte. Contrairement aux travaux précédents, la trajectoire suivie peut être différente de la trajectoire d’apprentissage. L’algorithme développé permet en effet de conserver la localisation malgré des changements de point de vue importants par rapport aux images acquises initialement. Le principe consiste à modéliser les points de repère sous forme de facettes localement planes, surnommées patchs plan, dont l’orientation est connue. Lorsque le véhicule se déplace, une prédiction de la position courante est réalisée et la déformation des facettes induite par le changement de point de vue est reproduite. De cette façon la recherche des amers revient à comparer des images pratiquement identiques, facilitant ainsi leur appariement. Lorsque les positions sur l’image de plusieurs amers sont connues, la connaissance de leur position 3D permet de déduire la position du robot. La transformation de ces patchs plan est complexe et demande un temps de calcul important, incompatible avec une utilisation temps-réel. Pour améliorer les performances de l’algorithme, la localisation a été implémentée sur une architecture GPU offrant de nombreux outils permettant d’utiliser cet algorithme avec des performances utilisables en temps-réel. Afin de prédire la position du robot de manière aussi précise que possible, un modèle de mouvement du robot a été mis en place. Il utilise, en plus de la caméra, les informations provenant des capteurs odométriques. Cela permet d’améliorer la prédiction et les expérimentations montrent que cela fournit une plus grande robustesse en cas de pertes d’images lors du traitement. Pour finir ce mémoire détaille les différentes performances de ce système à travers plusieurs expérimentations en conditions réelles. La précision de la position a été mesurée en comparant la localisation avec une référence enregistrée par un GPS différentiel. / This dissertation presents a vision-based localization system for a mobile robot in an urban context. In this goal, the robot is first manually driven to record a learning image sequence. These images are then processed in an off-line way to build a 3D map of the area. Then vehicle can be —either automatically or manually— driven in the area and images seen by the camera are used to compute the position in the map. In contrast to previous works, the trajectory can be different from the learning sequence. The algorithm is indeed able to keep localization in spite of important viewpoint changes from the learning images. To do that, the features are modeled as locally planar features —named patches— whose orientation is known. While the vehicle is moving, its position is predicted and patches are warped to model the viewpoint change. In this way, matching the patches with points in the image is eased because their appearances are almost the same. After the matching, 3D positions of the patches associated with 2D points on the image are used to compute robot position. The warp of the patch is computationally expensive. To achieve real-time performance, the algorithm has been implemented on GPU architecture and many improvements have been done using tools provided by the GPU. In order to have a pose prediction as precise as possible, a motion model of the robot has been developed. This model uses, in addition to the vision-based localization, information acquired from odometric sensors. Experiments using this prediction model show that the system is more robust especially in case of image loss. Finally many experiments in real situations are described in the end of this dissertation. A differential GPS is used to evaluate the localization result of the algorithm.

Page generated in 0.0568 seconds