• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilization of weakly charged microparticles using highly charged nanoparticles

Herman, David Joel 22 August 2011 (has links)
An experimental investigation was conducted to evaluate the possible use of highly-charged spherical nanoparticles to stabilize an aqueous dispersion of weakly-charged microspheres. At low pH values, the surface of silica is weakly charged, which leads to flocculation of colloidal suspensions of silica microspheres. Binary solutions of weakly charged silica microspheres and highly charged polystyrene latex nanoparticles result in adsorption of the nanoparticles onto the surface of the silica microspheres. This effectively "recharges" the silica spheres, with effective zeta potentials increased to the range that is unfavorable for flocculation of microspheres in a silica-only solution. However, this does not guarantee stability, and comparisons between positively charged amidine latex nanoparticles and negatively charged sulfate latex nanoparticles indicate that the degree of coverage plays an important role in the restabilization. The sulfate latex nanoparticles do not cover the surface sufficiently, and though they seemingly provide sufficient charge, the weakly charged patches of the exposed silica substrate can lead to flocculation. The amidine latex nanoparticles, on the other hand, cover the surface more completely, and effectively prevent flocculation of the silica microspheres. The mechanisms responsible for this different adsorption and stabilizing behavior are not entirely understood, as both the amidine and sulfate latex nanoparticles are of similar size and the magnitude of the zeta potentials of the different particle types are comparable. / Master of Science

Page generated in 0.0651 seconds