Spelling suggestions: "subject:"path integral renormalization group"" "subject:"math integral renormalization group""
1 |
Superconductivity in Strongly Correlated Quarter Filled SystemsGomes, Niladri, Gomes, Niladri January 2017 (has links)
The objective of this thesis is to reach theoretical understanding of the unusual relationship between charge-ordering and superconductivity in correlated-electron systems. The competition between these broken symmetries and magnetism in the cuprate high temperature superconductors has been extensively discussed, but exists also in many other correlated-electron superconductors, including quasi-two-dimensional organic charge-transfer solids. It has been suggested that the same attractive interaction is responsible for both charge-order and superconductivity. We propose that the specific interaction is the
tendency in correlated-electron systems to form spin-singlet bonds, which is strongly enhanced at the commensurate carrier density p of ½ a charge carrier per site, characteristic of all superconducting charge-transfer solids. To probe superconductivity driven by electron correlations, a necessary condition is that electron-electron interactions enhance superconducting pair-pair correlations, relative to the non-interacting limit. We have performed state of the art numerical calculations on the two-dimensional Hubbard model on different triangular lattices, as well as other lattices corresponding to K-BEDT-TTF based organic charge transfer solids, for the complete range of carrier densities per site p (0 ≤ p ≤ 1). We have shown that pair-pair correlation for each cluster is enhanced by electron-electron interaction only for p ≃ 0.5, far away from the density range thought to be important for superconductivity. Although initial focus is on charge-transfer solids, the results of the research will impact the field of correlated electrons as a whole. We believe our calculations will provide fundamental and fresh insight to the theory of superconductivity in strongly correlated systems.
|
Page generated in 0.171 seconds