• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Superconductivity in Strongly Correlated Quarter Filled Systems

Gomes, Niladri, Gomes, Niladri January 2017 (has links)
The objective of this thesis is to reach theoretical understanding of the unusual relationship between charge-ordering and superconductivity in correlated-electron systems. The competition between these broken symmetries and magnetism in the cuprate high temperature superconductors has been extensively discussed, but exists also in many other correlated-electron superconductors, including quasi-two-dimensional organic charge-transfer solids. It has been suggested that the same attractive interaction is responsible for both charge-order and superconductivity. We propose that the specific interaction is the tendency in correlated-electron systems to form spin-singlet bonds, which is strongly enhanced at the commensurate carrier density p of ½ a charge carrier per site, characteristic of all superconducting charge-transfer solids. To probe superconductivity driven by electron correlations, a necessary condition is that electron-electron interactions enhance superconducting pair-pair correlations, relative to the non-interacting limit. We have performed state of the art numerical calculations on the two-dimensional Hubbard model on different triangular lattices, as well as other lattices corresponding to K-BEDT-TTF based organic charge transfer solids, for the complete range of carrier densities per site p (0 ≤ p ≤ 1). We have shown that pair-pair correlation for each cluster is enhanced by electron-electron interaction only for p ≃ 0.5, far away from the density range thought to be important for superconductivity. Although initial focus is on charge-transfer solids, the results of the research will impact the field of correlated electrons as a whole. We believe our calculations will provide fundamental and fresh insight to the theory of superconductivity in strongly correlated systems.

Page generated in 0.171 seconds