• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sistema inteligente para diagn?stico de patologias na laringe utilizando m?quinas de vetor de suporte

Almeida, N?thalee Cavalcanti de 23 July 2010 (has links)
Made available in DSpace on 2014-12-17T14:54:56Z (GMT). No. of bitstreams: 1 NathaleeCA_DISSERT.pdf: 1318151 bytes, checksum: d2471205a640d8428567d06ace6c3b31 (MD5) Previous issue date: 2010-07-23 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The human voice is an important communication tool and any disorder of the voice can have profound implications for social and professional life of an individual. Techniques of digital signal processing have been used by acoustic analysis of vocal disorders caused by pathologies in the larynx, due to its simplicity and noninvasive nature. This work deals with the acoustic analysis of voice signals affected by pathologies in the larynx, specifically, edema, and nodules on the vocal folds. The purpose of this work is to develop a classification system of voices to help pre-diagnosis of pathologies in the larynx, as well as monitoring pharmacological treatments and after surgery. Linear Prediction Coefficients (LPC), Mel Frequency cepstral coefficients (MFCC) and the coefficients obtained through the Wavelet Packet Transform (WPT) are applied to extract relevant characteristics of the voice signal. For the classification task is used the Support Vector Machine (SVM), which aims to build optimal hyperplanes that maximize the margin of separation between the classes involved. The hyperplane generated is determined by the support vectors, which are subsets of points in these classes. According to the database used in this work, the results showed a good performance, with a hit rate of 98.46% for classification of normal and pathological voices in general, and 98.75% in the classification of diseases together: edema and nodules / A voz humana ? uma importante ferramenta de comunica??o e qualquer funcionamento inadequado da voz pode ter profundas implica??es na vida social e profissional de um indiv?duo. T?cnicas de processamento digital de sinais t?m sido utilizadas atrav?s da an?lise ac?stica de desordens vocais provocadas por patologias na laringe, devido ? sua simplicidade e natureza n?o-invasiva. Este trabalho trata da an?lise ac?stica de sinais de vozes afetadas por patologias na laringe, especificamente, edemas e n?dulos nas pregas vocais. A proposta deste trabalho ? desenvolver um sistema de classifica??o de vozes para auxiliar no pr?-diagn?stico de patologias na laringe, bem como no acompanhamento de tratamentos farmacol?gicos e p?s-cir?rgicos. Os coeficientes de Predi??o Linear (LPC), Coeficientes Cepstrais de Freq??ncia Mel (MFCC) e os coeficientes obtidos atrav?s da Transformada Wavelet Packet (WPT) s?o aplicados para extra??o de caracter?sticas relevantes do sinal de voz. ? utilizada para a tarefa de classifica??o M?quina de Vetor de Suporte (SVM), a qual tem como objetivo construir hiperplanos ?timos que maximizem a margem de separa??o entre as classes envolvidas. O hiperplano gerado ? determinado pelos vetores de suporte, que s?o subconjuntos de pontos dessas classes. De acordo com o banco de dados utilizado neste trabalho, os resultados apresentaram um bom desempenho, com taxa de acerto de 98,46% para classifica??o de vozes normais e patol?gicas em geral, e 98,75% na classifica??o de patologias entre si: edemas e n?dulos

Page generated in 0.0915 seconds