• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Pauli-Lubanski Vector in a Group-Theoretical Approach to Relativistic Wave Equations

January 2016 (has links)
abstract: Chapter 1 introduces some key elements of important topics such as; quantum mechanics, representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´ tivistic wave equations that will play an important role in the work to follow. In Chapter 2, a complex covariant form of the classical Maxwell’s equations in a moving medium or at rest is introduced. In addition, a compact, Lorentz invariant, form of the energy-momentum tensor is derived. In chapter 3, the concept of photon helicity is critically analyzed and its connection with the Pauli-Lubanski vector from the viewpoint of the complex electromag- ´ netic field, E+ iH. To this end, a complex covariant form of Maxwell’s equations is used. Chapter 4 analyzes basic relativistic wave equations for the classical fields, such as Dirac’s equation, Weyl’s two-component equation for massless neutrinos and the Proca, Maxwell and Fierz-Pauli equations, from the viewpoint of the Pauli-Lubanski vector and the Casimir ´ operators of the Poincare group. A connection between the spin of a particle/field and ´ consistency of the corresponding overdetermined system is emphasized in the massless case. Chapter 5 focuses on the so-called generalized quantum harmonic oscillator, which is a Schrodinger equation with a time-varying quadratic Hamiltonian operator. The time ¨ evolution of exact wave functions of the generalized harmonic oscillators is determined in terms of the solutions of certain Ermakov and Riccati-type systems. In addition, it is shown that the classical Arnold transform is naturally connected with Ehrenfest’s theorem for generalized harmonic oscillators. In Chapter 6, as an example of the usefulness of the methods introduced in Chapter 5 a model for the quantization of an electromagnetic field in a variable media is analyzed. The concept of quantization of an electromagnetic field in factorizable media is discussed via the Caldirola-Kanai Hamiltonian. A single mode of radiation for this model is used to find time-dependent photon amplitudes in relation to Fock states. A multi-parameter family of the squeezed states, photon statistics, and the uncertainty relation, are explicitly given in terms of the Ermakov-type system. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2016

Page generated in 0.0559 seconds