• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of material properties on the compactabillty of some untreated roadbuilding materials

Semmelink, C.J. (Christiaan Johan) January 1991 (has links)
The proper densification of the separate pavement layers forms an integral part of road construction. Many problems, are, however, experienced in this area. Because of a lack of knowledge the compaction of untreated roadbuilding materials in problem situations is usually approached on a ''trial and error'' basis rather than basing possible solutions on scientific evidence of the collective influence of the material properties and site conditions. The purpose of the study was to place the compaction of untreated roadbuilding materials on a more scientific basis. An investigation was therefore launched to determine the effect of measured material properties on their compactability. A non-standard vibratory compaction test was used to compact the samples in one layer. New test parameters to quantify the shape and texture of the material were also developed, namely the shakedown bulk density and the shape factor. The CBR values of the materials at moulding moisture content were determined for each material for a range of densities and moisture contents. The maximum dry densities (MOD) (vibratory and mod. AASHTO) and optimum moisture content (OMC) (vibratory and mod. AASHTO) were also determined. The measured values were then evaluated in terms of the following physical properties of the materials: grading, Atterberg limits, linear shrinkage, shakedown bulk density (SBD), loose bulk density (LBO), shape factor (SF) and specific rugosity (Srv). In the extensive laboratory study of 21 different untreated roadbuilding materials, varying from TAB classes A-7-6 to A-1, it was found that both the maximum dry densities and moisture regimes can be quantified in terms of the grading, liquid limit and linear shnnkage of the materials. These relations were modelled by means of regression analysis. Besides this a general bearing capacity model was found for all these materials where the CBR is a function of the dry density and moisture content of the material. This model was further refined to take account of the influence of shape and texture of the particles so that it is possible to determine reasonable estimates of the bearing capacity for a range of densities and moisture contents from the grading, Atterberg limits, linear shrinkage, shakedown bulk density and shape factor. This investigation has shown that physical laws govern both the compactability and bearing capacity of untreated roadbuilding materials, irrespective of their composition or nature, making it possible to approach the compaction of untreated roadbuilding materials in a more generalised manner. / Thesis (PhD)--University of Pretoria, 1991. / gm2014 / Civil Engineering / unrestricted
2

Avaliação de resíduos da fabricação de telhas cerâmicas para seu emprego em camadas de pavimento de baixo custo. / Evaluation of the waste from ceramic roofing tiles manufacturing for its use in unbound pavement layers.

Dias, João Fernando 02 December 2004 (has links)
Este trabalho apresenta a análise de agregados reciclados de telhas de cerâmica vermelha, visando seu emprego em camadas de pavimentos de baixo custo, baseado em estudos de laboratório. A indústria de cerâmica vermelha gera refugos da queima que são tratados como resíduos, mas se constituem em materiais de alto conteúdo energético e matéria prima de qualidade. O quadro da geração desses resíduos foi diagnosticado nas cidades de Monte Carmelo e Ituiutaba, em Minas Gerais. Os dados quantitativos obtidos indicam que é justificável a sua reciclagem. Somente na cidade de Monte Carmelo, as quantidades geradas permitiriam executar 10,8 km de camada de base de pavimento, ao se misturar 40% de solo poderia atingir 32 km por ano. Aproximadamente 10 t destes resíduos foram britadas obtendo-se o agregado reciclado de telha (ART). Estes agregados foram caracterizados mediante os ensaios físicos e mecânicos, e submetidos aos ensaios empregados na pavimentação, como a metodologia tradicional, metodologia MCT, método da pastilha, resistência ao cisalhamento, outros ensaios denominados índices de qualidade, ensaio de módulo resiliente e deformação permanente. Apesar deste material atender aos principais requisitos da metodologia tradicional, identificou-se que ele quebra com a aplicação de energia de compactação e de tensões nos ensaios, e apresenta alta resiliência - grandes deformações resilientes-, o que levaria à perda da capacidade de suporte da estrutura do pavimento, por fadiga. Desenvolveu-se uma metodologia para a determinação da absorção no estado saturado superfície seca, de agregados porosos, com fração fina inclusive, pois os métodos conhecidos não são aplicáveis; esta metodologia pode ser aprimorada para se constituir em norma de ensaio. Estudou-se um método inédito para a otimização do volume compactado da mistura de agregado com solo, baseado na porosidade do material granular, como uma alternativa ao método da estabilização granulométrica que se mostrou inadequado, no caso. As misturas produzidas com solos lateríticos foram avaliadas após a compactação não apresentando mais a quebra dos grãos do agregado, e mostraram ganhos expressivos no valor do módulo de resiliência, chegando em um caso a atingir 288% acima do módulo do agregado. Os resultados dos ensaios de laboratório indicaram ser possível a aplicação deste material em misturas com solos lateríticos, em camadas de pavimentos de baixo custo. / The purpose of this work is to use recycled aggregate of ceramics roofing tiles for low cost pavement layers, based on laboratory studies. The heavy-clay ceramic industry generates wastes, originated from the calcination stage, that are considered as residues which demand resources for its deposition. However they are high energy content materials which can be useful. The generation of these residues in the cities of Monte Carmelo and Ituiutaba, in the State of Minas Gerais indicated that its recycling is valid. For instance, in the city of Monte Carmelo, it is generated such a large amount of residues that it should be enough to execute about 10,8 km of base course of pavement; moreover if 40% of soil is mixed 32 km pavement per year can be produced. For this study, approximately 10 metric tones of these residues had been crushed to produce the recycled aggregate from roofing tile. The aggregates produced had been characterized by physical and mechanical tests. They were also submitted to the tests used for aggregates for pavement, such as the traditional methodology, methodology MCT (tropical compacted miniature), shear strength, resilient module, permanent deformation, and other tests called quality rates. These residues comply with the main requirements of the traditional methodology, however it is necessary to point out that the material breaks with the application of energy for compaction and under the tensions during the mechanical tests, it also presents high resilience, or great resilient deformations, which will lead to the loss of the supporting capacity of the pavement due to fatigue. An appropriate methodology was developed for the porous aggregate absorption measurement, including its fraction, in the saturated dry surface state. As the known methods for absorption are not applicable, this methodology with improvements can be proposed as standard test. A new method to optimize the compacted volume of the mixture was studied, based on the porosity of the granular material, as an alternative to the traditional method of the grain sized stabilization, which is not adequate for this purpose. The mixtures produced with lateritics soils were evaluated after the compacting, they have not presented the broken grains. These mixtures performed very well with significant increase in the value of the resilience module, up to 288% above of the module of the aggregate. The results of the laboratory indicate that it is possible to use these residues in mixtures with laterític soil, for layers of low cost pavements.
3

Avaliação de resíduos da fabricação de telhas cerâmicas para seu emprego em camadas de pavimento de baixo custo. / Evaluation of the waste from ceramic roofing tiles manufacturing for its use in unbound pavement layers.

João Fernando Dias 02 December 2004 (has links)
Este trabalho apresenta a análise de agregados reciclados de telhas de cerâmica vermelha, visando seu emprego em camadas de pavimentos de baixo custo, baseado em estudos de laboratório. A indústria de cerâmica vermelha gera refugos da queima que são tratados como resíduos, mas se constituem em materiais de alto conteúdo energético e matéria prima de qualidade. O quadro da geração desses resíduos foi diagnosticado nas cidades de Monte Carmelo e Ituiutaba, em Minas Gerais. Os dados quantitativos obtidos indicam que é justificável a sua reciclagem. Somente na cidade de Monte Carmelo, as quantidades geradas permitiriam executar 10,8 km de camada de base de pavimento, ao se misturar 40% de solo poderia atingir 32 km por ano. Aproximadamente 10 t destes resíduos foram britadas obtendo-se o agregado reciclado de telha (ART). Estes agregados foram caracterizados mediante os ensaios físicos e mecânicos, e submetidos aos ensaios empregados na pavimentação, como a metodologia tradicional, metodologia MCT, método da pastilha, resistência ao cisalhamento, outros ensaios denominados índices de qualidade, ensaio de módulo resiliente e deformação permanente. Apesar deste material atender aos principais requisitos da metodologia tradicional, identificou-se que ele quebra com a aplicação de energia de compactação e de tensões nos ensaios, e apresenta alta resiliência - grandes deformações resilientes-, o que levaria à perda da capacidade de suporte da estrutura do pavimento, por fadiga. Desenvolveu-se uma metodologia para a determinação da absorção no estado saturado superfície seca, de agregados porosos, com fração fina inclusive, pois os métodos conhecidos não são aplicáveis; esta metodologia pode ser aprimorada para se constituir em norma de ensaio. Estudou-se um método inédito para a otimização do volume compactado da mistura de agregado com solo, baseado na porosidade do material granular, como uma alternativa ao método da estabilização granulométrica que se mostrou inadequado, no caso. As misturas produzidas com solos lateríticos foram avaliadas após a compactação não apresentando mais a quebra dos grãos do agregado, e mostraram ganhos expressivos no valor do módulo de resiliência, chegando em um caso a atingir 288% acima do módulo do agregado. Os resultados dos ensaios de laboratório indicaram ser possível a aplicação deste material em misturas com solos lateríticos, em camadas de pavimentos de baixo custo. / The purpose of this work is to use recycled aggregate of ceramics roofing tiles for low cost pavement layers, based on laboratory studies. The heavy-clay ceramic industry generates wastes, originated from the calcination stage, that are considered as residues which demand resources for its deposition. However they are high energy content materials which can be useful. The generation of these residues in the cities of Monte Carmelo and Ituiutaba, in the State of Minas Gerais indicated that its recycling is valid. For instance, in the city of Monte Carmelo, it is generated such a large amount of residues that it should be enough to execute about 10,8 km of base course of pavement; moreover if 40% of soil is mixed 32 km pavement per year can be produced. For this study, approximately 10 metric tones of these residues had been crushed to produce the recycled aggregate from roofing tile. The aggregates produced had been characterized by physical and mechanical tests. They were also submitted to the tests used for aggregates for pavement, such as the traditional methodology, methodology MCT (tropical compacted miniature), shear strength, resilient module, permanent deformation, and other tests called quality rates. These residues comply with the main requirements of the traditional methodology, however it is necessary to point out that the material breaks with the application of energy for compaction and under the tensions during the mechanical tests, it also presents high resilience, or great resilient deformations, which will lead to the loss of the supporting capacity of the pavement due to fatigue. An appropriate methodology was developed for the porous aggregate absorption measurement, including its fraction, in the saturated dry surface state. As the known methods for absorption are not applicable, this methodology with improvements can be proposed as standard test. A new method to optimize the compacted volume of the mixture was studied, based on the porosity of the granular material, as an alternative to the traditional method of the grain sized stabilization, which is not adequate for this purpose. The mixtures produced with lateritics soils were evaluated after the compacting, they have not presented the broken grains. These mixtures performed very well with significant increase in the value of the resilience module, up to 288% above of the module of the aggregate. The results of the laboratory indicate that it is possible to use these residues in mixtures with laterític soil, for layers of low cost pavements.
4

Analytical and laser scanning techniques to determine shape properties of aggregates used in pavements

Komba, J.J. (Julius Joseph) January 2013 (has links)
Pavement layers are constructed using a combination of materials, of which rock aggregates constitute a larger proportion. Current understanding is that the performance of pavements is dependent on the aggregate shape properties which include form, angularity and surface texture. However, direct and accurate measurements of aggregate shape properties remain a challenge. The current standard test methods used to evaluate aggregate shape properties cannot measure these properties accurately. Among the reasons contributing to the difficulties in the determination of aggregate shape properties is irregular shapes of aggregate particles. Therefore, current research efforts focus on developing accurate, reliable and innovative techniques for evaluation of aggregate shape properties. The work presented in this dissertation contributes to the current innovative research at the Council for Scientific and Industrial Research (CSIR) in South Africa, to automate the measurement of aggregate shape properties. The CSIR’s present research is aimed at improving pavement performance through better materials characterisation, using laser scanning and advanced modelling techniques. The objective of this study was to investigate improved techniques for the determination of aggregate shape properties using analytical and laser scanning techniques. A three-dimensional (3-D) laser scanning device was used for scanning six types of aggregate samples commonly used for construction of pavements in South Africa. The laser scan data were processed to reconstruct 3-D models of the aggregate particles. The models were further analysed to determine the shape properties of the aggregates. Two analysis approaches were used in this study. The first approach used the aggregate’s physical properties (surface area, volume and orthogonal dimensions) measured by using laser scanning technique to compute three different indices to describe the form of aggregates. The computed indices were the sphericity computed by using surface area and volume of an aggregate particle, the sphericity computed by using orthogonal dimensions of an aggregate particle, and the flat and elongated ratio computed by using longest and smallest dimensions of an aggregate particle. The second approach employed a spherical harmonic analysis technique to analyse the aggregate laser scan data to determine aggregate form, angularity and surface texture indices. A MATLABTM code was developed for analysis of laser scan data, using the spherical harmonic analysis technique. The analyses contained in this dissertation indicate that the laser-based aggregate shape indices were able to describe the shape properties of the aggregates studied. Furthermore, good correlations were observed between the spherical harmonic form indices and the form indices determined by using the aggregate’s physical properties. This shows that aggregate laser scanning is a versatile technique for the determination of various indices to describe aggregate shape properties. Further validation of the laser-based technique was achieved by correlating the laser-based aggregate form indices with the results from two current standard tests; the flakiness index and the flat and elongated particles ratio tests. The laser-based form indices correlated linearly with both, the flakiness index and the flat and elongated particles ratio test results. The observed correlations provide an indication of the validity of laser-based aggregate shape indices. It is concluded that the laser based scanning technique could be employed for direct and accurate determination of aggregate shape properties. / Dissertation (MEng)--University of Pretoria, 2013. / gm2013 / Civil Engineering / Unrestricted
5

Experimentální zkoušení modulu pružnosti podkladních vrstev vozovek / Experimental testing of elasticity modulus for base layers of pavements

Kotas, Vojtěch January 2017 (has links)
The thesis is focused on experimental testing of resilient modulus Mr with triaxial test of chosen unbounded and bounded mixtures used in the sub-base layer of pavement. The reason of testing is to compare results with TP 170 – pavement construction guide containing commonly used values of resilient modulus Mr. Thesis should check if those values are correct and real. For classification of chosen materials there are used another tests like grain size distribution, compaction, California bearing ratio CBR for unbounded mixtures and compressive strength for cement-bounded mixtures.

Page generated in 0.093 seconds