1 |
Élimination du nitrate dans l'eau potable par catalyse hétérogène et photocatalyse au moyen de nanocatalyseurs AgPt et PdSn supportés sur oxyde de titane / Heterogeneous catalytic and photocatalytic nitrate abatement for drinking water using AgPt and PdSn supported on titania nanocatalystsANTOLíN POZUETA, Ana María 16 December 2016 (has links)
En Europe, l’utilisation en agriculture de grandes quantités d’engrais chimiques est la principale cause de contamination des eaux. Les concentrations en nitrate dans l’eau deviennent nuisibles pour les personnes lorsqu’elles dépassent certaines limites car elles sont la cause de méthémoglobinémie, de cancers et agissent comme perturbateurs endocriniens. L’hydrogénation catalytique hétérogène des nitrates est la méthode de dénitration la plus connue et la plus efficace due à la grande sélectivité pour les produits non toxiques, azote et eau. La photocatalyse hétérogène a émergé comme une voie très prometteuse de dénitration du fait de la possibilité d’utiliser la lumière solaire ce qui la rend commercialement compétitive et compatible avec la protection de l’environnement. Les procédés catalytiques conduisent fréquemment à l’obtention des sous-produits toxiques nitrite et ion ammonium, ainsi qu’à des oxydes d’azote gazeux NOx. Dans ce travail ont été utilisés des catalyseurs monométalliques supportés (Ag/P25, Pt/P25), leur mélange physique, et des catalyseurs bimétalliques supportés (Ag-Pt/P25 et Pd-Sn/P25). Le support oxyde de titane (TiO2) P25 est choisi pour développer un catalyseur performant pour la dénitration à la fois catalytique et photocatalytique permettant d’atteindre les normes requises par l’UE dans l’eau potable (50 mg/L NO3-, 0.5 mg/L NO2-, 0.3 mg/L NH4+). L’influence des teneurs en métaux (Ag: 0.5 – 4 pds.%; Pt: 2 et 4 pds.%), du précurseur Pt (H2PtCl6 (H)/K2PtCl6 (K)), de l’ordre d’imprégnation de Ag et Pt et de la morphologie des particules bimétalliques Pd-Sn (nanoparticules et nanobâtonnets) ont été étudiés. Les conditions expérimentales (présence/absence de H2 ; λ = 254 ou 365 nm; 4W; 45.4 mW/cm2) ont été également variées et les réactions effectuées dans un réacteur batch en PTFE sous atmosphère inerte et dans des conditions standard (catalyseur : 0.7 mg/L ; 100 mg/L NO3- ; 500 r.p.m). Contrairement à la plupart des études précédentes aucun «piégeur de trous» (expl. acides formique ou oxalique) n’a été utilisé dans nos conditions de réaction, Les analyses ont été effectuées par chromatographie ionique ou photométrie. Les propriétés physico-chimiques des catalyseurs ont été déterminées par DRX, Physisorption de N2, MET, DRUV-Vis, XPS, TPR et chimisorption de H2. Le support TiO2 P25 est inactif dans les deux procèdés non photocatalytique et photocatalyique. Le mélange physique Ag/P25+Pt/P25 conduit à une conversion (~ 56%) et sélectivité en N2 (~ 76%) plus élevées dans les conditions non photocatalytiques que chacun des homologues monométalliques, cependant NO2- and NH4+ sont obtenus. Les catalyseurs bimétalliques Ag-Pt(Pt-Ag)/P25 se montrent polyvalents étant actifs dans les procédés non-photocatalytiques et photocatalytiques. Les meilleurs résultats photocatalytiques ont été obtenus sous irradiation ultraviolette de 365 nm et en présence de H2 dû à la synergie entre les électrons générés par irradiation et l’hydrogène dissocié sut Pt. Le Pt imprégné en premier conduit à une conversion plus élevée en raison de l'amélioration de l'accessibilité de NO3- aux sites actifs Ag0 recouvrant partiellement Pt. Toutefois la sélectivité en NO2- est élevée du fait de la faible accessibilité de Pt. Pt imprégné en second décore les ensembles Ag et diminue de ce fait le nombre de sites actifs et la conversion. Le catalyseur bimétallique Pt(4)-Ag(2)/P25(K) conduit au meilleur compromis entre conversion (ca. 45%) et sélectivité en N2 (ca. 80%) dans les conditions photocatalytiques. Ceci est attribué au transfert électronique élevé entre Ag et Pt en forte interaction mis en évidence par XPS. Néanmoins, NO2- et NH4+ sont aussi obtenus. Des travaux sont encore nécessaires pour améliorer le rendement en N2. / In Europe, the agricultural use of nitrates in chemical fertilizers has been a main source of water contamination. High level of soluble nitrate in water becomes harmful pollutant for people when it exceeds the limit causing methemoglobinemia (blue baby syndrome), cancer or act as endocrine disruptor. Conventional catalytic nitrate reduction processes into N2 and H2O lead to some toxic products (NO2-, NH4+, and NOx gases). Alternatively, photocatalytic nitrate removal using solar irradiation and heterogeneous catalysts is a very promising and ecofriendly route, which has been scarcely performed. In this work monometallic supported catalysts (Ag/P25, Pt/P25), their physical mixture, and bimetallic supported catalysts (Ag-Pt(Pt-Ag)/P25 and Pd-Sn/P25) have been used. The support TiO2 P25 was chosen to develop both efficient non-photocatalytic and photocatalytic processes able to reach the EU legislation in drinking water (50 mg/L NO3-, 0.5 mg/L NO2-, 0.3 mg/L NH4+). Different compositions of catalyst including, various metal loadings (Ag: 0.5 – 4 wt%; Pt: 2 and 4 wt%), Pt precursor (H2PtCl6 (H)/K2PtCl6 (K)), Ag and Pt impregnation order, and morphology of Pd-Sn nanoparticles (spherical and nanorods) have been studied. Different experimental conditions (presence/absence of H2; λ = 254 or 365 nm; 4W; 45.4 mW/cm2) have been also evaluated and the experiments performed in a PTFE batch reactor under inert standard operational conditions (0.7 mg/L catalyst ; 100 mg/L NO3- ; 500 r.p.m). Contrary to most previous studies, any hole scavenger (e.g. formic or oxalic acid) was used in the reaction . Analyses were performed by ionic chromatography or photometry. Physico-chemical characterizations of the catalysts were done by XRD, N2-physisorption, TEM, DRUV-Vis, XPS, TPR and H2-Chemisorption in order to explain both the catalytic and photocatalytic performances.The support TiO2 P25 was inactive in both processes. The physical mixture Ag(2)/P25+Pt(4)/P25(H) showed better conversion (ca. 56 %) and N2 selectivity (ca. 76%) under non-photocatalytic conditions than each monometallic catalyst, however NO2- and NH4+ were obtained. Bimetallic Ag-Pt(Pt-Ag)/P25 catalysts exhibit a versatile behavior being active both in the non-photocatalytic and photocatalytic processes. The best photocatalytic conditions were interestingly obtained under the ultraviolet irradiation of 365 nm and in presence of hydrogen. Photocatalytic activity was enhanced in presence of H2 due to synergetic effect induced by light between photogenerated electrons and dissociation of hydrogen on Pt. Therefore, all bimetallic catalysts based on Ag and Pt were tested under these conditions. Pt impregnated first leads to higher conversion due to improved accessibility of NO3- to active Ag0 sites partially covering Pt than the opposite impregnation order where the Pt decorates Ag and reduces the number of active sites. However, high NO2- selectivity at the expense of N2 is obtained in the former case due to low Pt accessibility. The bimetallic catalyst Pt(4)-Ag(2)/P25(K) led to the most interesting conversion (ca. 45%) with the highest selectivity to N2 (ca. 80%) under photocatalytic conditions. This was assigned to the highest electronic transfer between Ag et Pt particles in close contact revealed by XPS. Nevertheless, NO2- and NH4+ are obtained too. Further studies must be done to enhance the catalytic and photocatalytic activity towards desired N2.
|
2 |
Synthesis of vinyl acetate on palladium-based catalystsKumar, Dheeraj 02 June 2009 (has links)
Vinyl acetate (VA) is an important monomer used in the production of paints, surface
coatings and adhesives. Synthesis of VA is usually carried out over supported Pd alloy catalysts
with a selectivity as high as 96% and described as
C2H4 + CH3COOH + ½ O2 -> C2H3OOCCH3 + H2O
Although the VA synthesis reaction has been industrially carried out for many years, the
nature of the active sites and the reaction mechanism is still unclear. The goal of this study was
to acquire a fundamental understanding of the VA reaction mechanism by carrying out detailed
kinetic and spectroscopic investigations on single crystals and supported Pd catalysts, and to
detail the role of alloying in optimizing the selectivity of this important industrial reaction.
A combination of surface science techniques and kinetic measurements has been used to
address the mechanism. Supported catalysts, 1 wt% Pd/SiO2 and 5 wt% Pd/SiO2, and 1 wt% Pd-0.5 wt% Au/SiO2, were prepared by an incipient wet-impregnation method and characterized
using XRD and TEM. On Pd-only catalysts the reaction rates were found to be: Pd(100) < 5
wt% Pd/SiO2 (dpd = 4.2 nm) < 1 wt% Pd/SiO2 (dpd = 2.5 nm). Particle size-dependence of the
reaction rates is evident for the Pd-only catalysts, which suggests a degree of structure sensitivity
of the reaction. There is an increased availability of uncoordinated, edge atoms on small particles. With a Pd single crystal, fewer less-coordinated surface sites are present compared to a
comparable area on a small Pd particle on a supported Pd catalyst.
The formation of Pd carbide (PdCx) during the synthesis of VA was investigated over
Pd/SiO2 catalysts with two different Pd particle sizes, as well as over a Pd-Au/SiO2 mixed-metal
catalyst. XRD data indicate that smaller Pd particles show greater resistance to the formation of
PdCx. The alloying of Au with Pd is apparently very effective in preventing PdCx formation in
Pd-based catalysts for VA synthesis.
Addition of Au to Pd/SiO2 catalysts significantly enhances the VA formation rate and
selectivity. Infrared reflection absorption spectroscopy (IRAS) of CO on Pd/Au(100) and
Pd/Au(111) confirms the presence of Pd as isolated monomers on a Au-rich surface. A pair of
Pd monomers is the most favorable active site for the formation of VA. The spacing between the
two active isolated Pd atoms is critical and is demonstrated by the relative rates of VA formation
on Pd/Au model catalysts, i.e. Pd/Au(111) < Pd/Au(100). The role of Au is to isolate the surface
Pd atoms and thus suppress the formation of by products, CO and CO2. A pair of Pd monomers
required for VA synthesis is further confirmed by the results from model studies of Sn-Pd.
|
3 |
Diffusion-Controlled Growth of Phases in Metal-Tin Systems Related to Microelectronics PackagingBaheti, Varun A January 2017 (has links) (PDF)
The electro–mechanical connection between under bump metallization (UBM) and solder in flip–chip bonding is achieved by the formation of brittle intermetallic compounds (IMCs) during the soldering process. These IMCs continue to grow in the solid–state during storage at room temperature and service at an elevated temperature leading to degradation of the contacts. In this thesis, the diffusion–controlled growth mechanism of the phases and the formation of the Kirkendall voids at the interface of UBM (Cu, Ni, Au, Pd, Pt) and Sn (bulk/electroplated) are studied extensively.
Based on the microstructural analysis in SEM and TEM, the presence of bifurcation of the Kirkendall marker plane, a very special phenomenon discovered recently, is found in the Cu–Sn system. The estimated diffusion coefficients at these marker planes indicate one of the reasons for the growth of the Kirkendall voids, which is one of the major reliability concerns in a microelectronic component. Systematic experiments using different purity of Cu are conducted to understand the effect of impurities on the growth of the Kirkendall voids. It is conclusively shown that increase in impurity enhances the growth of voids.
The growth rates of the interdiffusion zone are found to be comparable in the Cu–Sn and the Ni–Sn systems. EPMA and TEM analyses indicate the growth of a metastable phase in the Ni–Sn system in the low temperature range. Following, the role of Ni addition in Cu on the growth of IMCs in the Cu–Sn system is studied based on the quantitative diffusion analysis. The analysis of thermodynamic driving forces, microstructure and crystal structure of Cu6Sn5 shed light on the atomic mechanism of diffusion. It does not change the crystal structure of phases; however, the microstructural evolution, the diffusion rates of components and the growth of the Kirkendall voids are strongly influenced in the presence of Ni. Considering microstructure of the product phases in various Cu/Sn and Cu(Ni)/Sn diffusion couples, it has been observed that
(i) phases have smaller grains and nucleate repeatedly, when they grow from Cu or Cu(Ni) alloy, and (ii) the same phases have elongated grains, when they grow from another phase.
A difference in growth rate of the phases is found in bulk and electroplated diffusion couples in the Au–Sn system. The is explained in AuSn4 based on the estimated tracer diffusion coefficients, homologous temperature of the experiments, grain size distribution and crystal structure of the phase. The growth rates of the phases in the Au–Sn system are compared with the Pd–Sn and the Pt–Sn systems. Similar to the Au–Sn system, the growth rate of the interdiffusion zone is found to be parabolic in the Pd–Sn system; however, it is linear in the Pt–Sn system. Following, the effect of addition of Au, Pd and Pt in Cu is studied on growth rate of the phases. An analysis on the formation of the Kirkendall voids indicates that the addition of Pd or Pt is deleterious to the structure compared to the addition of Au. This study indicates that formation of voids is equally influenced by the presence of inorganic as well as organic impurities.
|
Page generated in 0.0162 seconds