• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Methods for Phase System Characterization in Liquid Chromatography

Samuelsson, Jörgen January 2008 (has links)
The aim of this thesis is first and foremost to improve the fundamental knowledge of nonlinear and preparative separation theory by focusing on some of the remaining “white spots” on the theoretical chromatographic map. Secondly, the acquired knowledge is used to develop, validate and execute new methods for phase characterization in liquid chromatography. The methodology used in this thesis is a combination of experiments, fundamental nonlinear theory and systematic computer simulations. A fundamental knowledge of the molecular interactions between the compounds to be separated and the separation media requires the determination of adsorption isotherms over a broad concentration range to give a complete picture of all interactions in the separation system - weak as well as strong. In addition, such adsorption data is essential for optimization in preparative chromatography. For the first time, it has been experimentally shown that the injected molecules are not present in the detected peak when a small excess of molecules are injected into a chromatographic system equilibrated with a constant stream of identical molecules. Several experimental procedures for this method were developed such as (i) the optimal injection strategy and (ii) different labeling methods for visualizing the injected molecules. Remarkable phenomena in the single-component case, such as invisible peak deformation and deformed (invisible) frontal chromatograms, are reported, investigated, and explained. This phenomenon has asides from its future practical implementation, also a large didactic value. The accuracy of the ECP method is experimentally improved, and used to characterize the separation of protolytic compounds at different pH on modern commercially available silica and hybrid silica column packing materials. That investigation enables us to answer why basic compounds give a much more compact preparative peak profile at pH 11 than they yields at lower pH.
2

Adsorption Studies with Liquid Chromatography : Experimental Preparations for Thorough Determination of Adsorption Data

Edström, Lena January 2014 (has links)
Analytical chemistry is a field with a vast variety of applications. A robust companion in the field is liquid chromatography, the method used in this thesis, which is an established workhorse and a versatile tool in many different disciplines. It can be used for identification and quantification of interesting compounds generally present in low concentrations, called analytical scale chromatography. It can also be used for isolation and purification of high value compounds, called preparative chromatography. The latter is usually conducted in large scale with high concentrations. With high concentrations it is also possible to determine something called adsorption isotherms. Determination of adsorption isotherms is a useful tool for quite a wide variety of reasons. It can be used for characterisation of chromatographic separation systems, and then gives information on the retention mechanism as well as provides the possibility to study column-column and batch-batch reproducibility. If a protein is immobilised on a solid support, adsorption isotherms can be used for pharmacological characterisation of drug-protein interactions. Moreover, they can be used for the study of unexpected chromatographic phenomena. If the adsorption isotherm is known it is also possible to simulate chromatograms, and subsequently optimise the separation process numerically. The gain of a numerically optimised separation process is higher purity or yield of valuable compounds such as pharmaceuticals or antioxidants, as well as reducing the solvent usage. Taken all together, it saves time, money and the environment. However, the process of the adsorption isotherm determination requires a number of careful experimental considerations and preparations, and these are the main focus of the thesis. Important steps along the way include the choice of separation system and of suitable analytes, preparation of mobile phases and sample solutions, calibration, determination of injection profiles and column void, and of course the adsorption isotherm determination method itself. It is also important to keep track of parameters such as temperature and pH. These issues are discussed in this thesis. At the end, a description of useful methods for processing of the raw adsorption isotherm data is presented, as well as a brief passage on methods for numerical optimisation.

Page generated in 0.1104 seconds