• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determinants of commercialization and the choice of market outlets among small-scale groundnut framers in Capricorn District, Limpopo Province, South Africa

Mathobela, Sakkie Malesela January 2021 (has links)
Thesis (M.Sc. Agriculture (Agricultural Economics)) -- University of Limpopo, 2021 / Groundnut is one of the most important agricultural crops in South Africa. It provides economic and health benefits to the society. Its production, processing and marketing provides employment to several individuals in South Africa. The objectives of the study were: to identify and describe the socio-economic characteristics of small-scale groundnut farmers, analyse the determinants of commercialization and the factors influencing the choice of market outlet in Capricorn district. The study was conducted in three villages (Ga-Maja, Ga-Mphahlele and Moletjie). Purposive sampling technique was used to select 110 small-scale groundnut farmers. Semi-structured questionnaires were used to collect data from the small-scale groundnut farmers through face-to-face interviews. The data was analysed using the descriptive statistic, Logistic Regression and Multinomial Logit model. SPSS and STATA software were used to process the data. The results indicated that quantity of groundnut produced, occupation, marital status, household size, land size, vehicle ownership, access to credit and extension contact significantly influenced the commercialization and the choice of market outlet of the small-scale groundnut farmers in the study area. The study recommends that the government in collaboration with universities and agricultural colleges as well as the private sector initiate an extension programme that will focus on small-scale farmers, rather than on emerging and commercial farmers only. This will enable the small-scale famers to get access to information on the market, production, price and other agricultural related activities. It further recommends that the Department of Agriculture visit areas where farmers produce the same type of crops and offer them incentives to pool their resources and market their produce collectively. This will improve the bargaining position of the small-scale farmers as well as the means of lowering transaction costs. / National Research Foundation (NRF)
2

The inheritance of four morphological traits in peanut (Arachis hypogaea L.)

Essomba, Nehru Bengono January 1987 (has links)
Studies of the inheritance of morphological traits contribute to the understanding of peanut genetics. Investigations of the fertility and cytogenetics of interspecific progenies between Arachis hypogaea and wild Arachis species have provided invaluable information on the phylogenetic relationships within the genus Arachis and on the amphidiploid nature of peanut. However, the inheritance of morphological traits using interspecific progenies has not been elucidated to date. The objective of this study was to identify and to analyze genetic factors controlling growth habit, stem color, root nodulation, and leaflet size in peanut. F1 and F2 progenies were obtained from diallel crosses between A. hypogaea cvs. Argentine and T2442, and A. monticola. Fz progenies and parents were grown at the Tidewater Agricultural Experiment Station in 1985. F1 plants were grown in the greenhouse in 1986. Five, six, and seven phenotypic classes, respectively, were assigned to characterize growth habit, stem color, and leaflet size. Root nodulation was indirectly determined through leaf color. Chi-squares were computed to test homogeneity of reciprocal crosses and genetic ratios for growth habit, stem color, and root nodulation. Leaflet size distributions were analyzed graphically and independence of inheritance was tested among all traits studied. Analysis of results indicates that: 1) growth habit may be determined by four genes having two types of isoalleles, 2) the relationship between and within these four genes may be essentially additive, 3) all loci may not contribute with the same weight to growth habit phenotype, 4) purple and green pigmentations may be determined by two distinctive sets of epistatic genes, 5) the two genes responsible for green pigmentation may be duplicate, 6) more than two types of alleles may have been involved for one or more loci responsible for stem color, 7) root nodulation may be determined by three independent non-duplicate genes, 8) leaflet size may be quasi-quantitatively determined in peanut, 9) extranuclear factors may interact additively and/or epistaticly with nuclear factors determining growth habit, stem color, and leaflet size, 10) the relatively high number of segregating loci observed for all the traits studied may have resulted from the use of A. monticola as one of the parents, and 11) extranuclear factors may induce or modify relationships between traits when they interfere with nuclear genes determining these traits. / M.S.
3

Farmer perceptions and genetic studies of rosette disease in groundnut (Arachis hypogaea L.) in northern Mozambique.

Muitia, Amade. 01 November 2013 (has links)
Groundnut (Arachis hypogaea L.) is an important food and cash crop in Mozambique and production has been constrained by lack of high-yielding cultivars and disease infection. Objectives of this study were: 1) to identify farmers’ major groundnut production constraints and their preferences for cultivars; 2) to determine genotypic variation among landraces for agro-morphological traits and resistance to groundnut rosette disease; 3) to determine agronomic performance and resistance to groundnut rosette disease among advanced groundnut lines; and 4) to determine the inheritance of resistance to groundnut rosette disease. The study was conducted in northern Mozambique from 2008/2009 to 2010/2011. In attempt to identify farmers’ major groundnut production constraints and their preferences in cultivars, a participatory rural appraisal (PRA) was conducted in Namuno and Erati districts in northern Mozambique. Results from the PRA showed that farmers were aware of the constraints affecting groundnut production and productivity in the study area. The major constraints included groundnut rosette disease, insect pests, lack of seeds and improved cultivars, low soil fertility and lack of infra-structure. Groundnut rosette disease was ranked the most important constraint, and it was widespread in the region. Selection criterion for groundnut cultivars used by women differed from that used by men within village and across villages. However, high yield and oil content were the most important traits preferred by farmers followed by pod and seed size, earliness, disease and insect pest resistance. Fifty-eight groundnut landraces were collected from northern Mozambique (Nampula, Cabo Delgado, Niassa and Zambezia) and evaluated for variation in agro-morphological traits and resistance to groundnut rosette disease. The landraces showed high phenotypic diversity in agro-morphological traits. Clustering by nearest neighbour method indicated that the genotypes could be grouped into six clusters, indicating that agro-morphological diversity exists. The highest yielding genotypes were Pambara-4, Pambara-2, Pambara-6, lle-1, Imponge-1-Tom and Gile-5. There was considerable genetic variability for resistance to groundnut rosette disease among the landraces. Four landraces (PAN-4, Imponge-4, Pambara-3, Metarica Joao) were classified as resistant. No significant correlation was observed between seed yield and groundnut rosette incidence. Thirty-two improved lines were evaluated for performance in two growing seasons across three locations in northern Mozambique (Nampula, Namapa and Mapupulo). The results indicated that the highest yielding genotype was 23A and the highest yielding location was Namapa. There was a significant and negative correlation between seed yield and groundnut rosette disease indicating that the seed yield was negatively influenced by the disease. The results on stability analysis indicated that genotype 35B was the most stable across environments since it had coefficient of regression around unity (bi=1.024), high coefficient of determination (R2=0.999), and small variance deviation (var-dev=162.8), and 13 % above average seed yield. It is, therefore, concluded that genotype 35A could be recommended for cultivation on diverse environments of northern Mozambique. A trial was conducted using the parents and F2 populations derived from a 7 X 7 diallel cross. The test materials were infected with groundnut rosette disease using the spreader-row technique. The results indicated that no genotype was immune to disease. The mean squares due to both general combining ability (GCA) and specific combining ability (SCA) were significant indicating that additive and non-additive gene actions were involved in the expression of resistance to groundnut rosette disease. The general predictability ratio (GCA:SCA) was 0.97, indicating the predominance of additive over non-additive gene action in the inheritance of the disease. The study also found that groundnut rosette disease was controlled by two recessive genes. However, some genetic modifiers may also be present and influence disease expression. In general, the study revealed that breeding opportunities do exist, incorporating farmers preferred traits and major groundnut production constraints into new groundnut cultivars. Improving cultivars for resistance to groundnut rosette disease will be a major breeding focus, while selection for other traits and constraints will not be ignored. Resistance has been identified from local landraces. Advanced lines with high yields across environments were identified that can be recommended for release. The high significant additive effects observed for groundnut rosette disease implied genetic advance could be effective in the F2 and later generations through selection, although modifiers could slow the progress. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
4

Breeding groundnut for resistance to rosette disease and its aphid vector, Aphis craccivora Koch in Malawi.

Chintu, Justus M.M. 21 November 2013 (has links)
Groundnut (Arachis hypogaea L.) is one of the most important legume crops in Malawi. However, production among smallholder farmers has declined in recent years. One of the constraints affecting groundnut production is groundnut rosette disease (GRD). Therefore, the main objective of this study was to develop appropriate groundnut cultivars that are resistant to GRD, combined with other traits preferred by farmers, in order to improve income and food security of smallholder farmers in Malawi and beyond. The specific aims were; (i) to assess groundnut cropping systems used by smallholder farmers in Malawi, their varietal preferences, and production challenges (ii) to assess the genetic diversity among groundnut germplasm collected from ICRISAT, the Chitedze gene bank and farmers (iii) to identify sources of resistance to GRD and to its aphid vector (iv) and to understand the type of gene action governing GRD resistance, and to identify groundnut genotypes suitable for use as parents in breeding for GRD resistance. Assessment of groundnut cropping systems used by smallholder farmers, their varietal preferences, and production challenges was done by using a field survey and participatory rural appraisal (PRA) tools. The field survey was done in Lilongwe, Mchinji and Salima while the PRA was done in Kasungu, Lilongwe, and Salima. The assessment of genetic diversity among 106 groundnut genotypes collected from ICRISAT, Chitedze gene bank and farmers was done using 19 SSR markers. High throughput DNA extraction was done followed by polymerase chain reactions (PCR) after which the amplified products were analyzed. Evaluation of genotypes to identify new sources of resistance to GRD and its aphid vector was conducted under two test situations, one with high inoculum levels and one with low inoculum levels. Under high inoculum level, the infector row technique developed by Bock and Nigam (1990) which employs a susceptible variety as a disease spreader was used. While under low inoculum level, an aphid resistant variety instead of the infector row was used to control the aphids. Aphid resistance was studied under field and glasshouse conditions. Plants were planted in rows and at 14 DAS, 2 aphids were place on each plant. Aphid resistance was determined by observing the increase in number of the aphid population on the test plants. Gene action governing inheritance of resistance to GRD was studied under high disease pressure created by using viruliferous aphids. Parents and F2 generations and their reciprocals were used in the study. The trials were laid out in a glasshouse and aphids were infested a week after germination and were killed after 7 days using Dimethoate. Disease data was collected at 7, 14, 21 and 28 days after aphid infestation. The study on groundnut cropping systems, varietal preferences and production challenges revealed that most farmers grew groundnut alongside maize (Zea mayis L.) and beans (Phaseolus vulgaris L.) as food crops and tobacco (Nicotiana tabacum L.) and cotton (Gossypium hirsutum L.) as cash crops. The most preferred groundnut varieties grown by farmers were Chalimbana and CG 7. GRD was observed in half of the fields visited. However, 98% of the farmers interviwed had experienced it in their fields at some point, and 63.3% of the farmers believed that GRD was a major problem. Other challenges noted by farmers included lack of quality seed, poor extension support, lack of inputs, manipulation of the markets by buyers, and the failure of groundnut crops to meet the high standards required by the market. The examination of genetic diversity among 106 groundnut genotypes revealed a total number of 316 alleles with a mean of 17 alleles per locus. Polymorphic information content (PIC) and gene diversity values were high, which indicated that genetic diversity among the groundnut genotypes was high. The analysis of molecular variance indicated that 72.9% of the genetic variation observed in the genotypes was due to the variation between individuals within rather than between specific population groups. The evaluation of genotypes for resistance to GRD revealed five highly resistant genotypes namely ICG 9449, ICG 14705, ICGV-SM 05701, MW 2672 and MW 2694. Farmer preferred genotypes were rated as either moderately resistant or susceptible to GRD. Aphid resistance was only recorded in ICG 12991. Yield and GRD incidence were negatively and moderately correlated, which confirmed that GRD has the potential to reduce yield in groundnuts. The highly resistant genotypes were also high yielding except for genotype ICG 9449. Farmer preferred genotypes CG 7, Chalimbana and Tchayilosi, also gave above average yields, despite high disease incidence levels, which showed that these genotypes have tolerance to GRD. The study on gene action governing GRD resistance revealed information on combining ability effects of GRD resistance. The diallel analysis showed that GCA, SCA, reciprocal, maternal and non-maternal effects were all significant, which indicated that both additive and non-additive gene effects played a role in governing GRD resistance. The significance of SCA and reciprocal effects indicated that maternal parents played an important role in the expression of GRD resistance. However, the additive effects were predominant over non-additive gene effects. Four of the resistant genotypes, ICG 14705, MW 2694, ICGV-SM 05701, and MW 2672, were the best combiners for GRD resistance. Generally, the study indicates that there is still a need to develop new varieties with resistance to GRD having traits preferred by farmers to enhance adoption. There is also a need for breeders to work with extension staff in promoting new varieties and also there is need for extension staff to actively provide information to farmers on production and marketing of groundnut. Groundnut is widely known to have a narrow genetic base which has been a bottleneck to its improvement. However, the high genetic diversity observed in this study provides a basis for selection of appropriate parental genotypes for breeding programmes which can enhance further the broadening of the groundnut genetic base. Identification of the genotypes with high resistance to GRD in this study provides an opportunity to breed more GRD resistant materials. The observation that additive gene effects are predominant in governing GRD resistance means that GRD resistant materials can be improved by introgressing additive genes using recurrent selection breeding procedures. There is also a need to employ molecular techniques which can help in shortening the entire breeding process. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.

Page generated in 0.0486 seconds