• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • Tagged with
  • 23
  • 8
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fault and fracture systems related to reactivation of pre-existing structural elements, Devils River Uplift and Maverick Basin, Texas

Smith, Gordon Allen 18 February 2014 (has links)
Pre-existing structural elements can have substantial effects on fracture and fault development in younger strata, especially in areas that undergo significant changes in tectonic setting due to reactivation along older structures. This may affect reservoir permeability, yet remain difficult to detect in subsurface data. The focus of this study centers on two styles of pre-existing structures—Paleozoic thrust belts and Late Triassic rift faults in the Devils River Uplift and Maverick Basin, respectively—which affect the development of faults and fractures in Cretaceous strata. Fault and fracture data were characterized in both the outcrop and within a 3D seismic volume. Furthermore, the role of mechanical stratigraphy on fault and fracture style in both localities was examined. The Pecos River Canyon overlies the Paleozoic Ouachita fold-thrust belt with associated EW and SE-NW trending structures. At the surface, faults are expressed in two predominant orientations (N38E and N70E), which may be predictable angles if the pre-existing structures are reactivated by left lateral oblique slip. Detailed investigation of the fracture development related to these faults was conducted in a dry side canyon along the Pecos River. Mechanical layers were identified and mapped in outcrop to highlight fracture intensity variations between the different layers. The porosity and/or the degree of dolomitization are identified as controls on fracture development, with the lowest strength layer and least fractured being highly dolomitized with the largest porosity of any observed layer in outcrop. Southeast of Lewis Canyon, a 3D seismic of the Maverick Basin reveals linear discontinuities, interpreted as low-offset faults, within the Cretaceous Glen Rose through Austin Chalk that appear similar to those observed in outcrop along the Lower Pecos River. These faults are shown to have an increase in intensity within strata above older Late Triassic-age rift faults. It is proposed that the small faults form during reactivation of the rift faults and exhibit differential degrees of intensity and vertical terminations against six identified mechanical boundaries observed within the 3D seismic volume. / text
22

Hydrologic modeling of the Pecos River basin below Red Bluff Reservoir

Yalcinkaya, Sedat 17 June 2011 (has links)
The segment of the Pecos River that extends from Red Bluff Reservoir until it discharges to the Rio Grande/Bravo near Langtry was studied in this project. Hydrologic behavior of the basin was analyzed between 1981 and 2000, the first ten year period for calibration and the second ten year period for validation by using Water Evaluation and Planning Software (WEAP, SEI, 2006). Simulated streamflows were compared with naturalized streamflows (RJBCO, 2003) at two control points, one in the middle of the basin near Girvin and the other one is at the end of the basin near Langtry. The purpose of the project is to create a valid model for water availability simulations in the Pecos River Basin to be used for future water availability simulations considering climate change effects. The basin was divided into two parts in order to evaluate the results, the upper basin and the entire basin (below Red Bluff reservoir) according to the location of control gages. Simulated streamflows closely match the naturalized flows at the Girvin station in the upper basin. Although the results at the Langtry station for the entire basin are not as good as Girvin, the model still reproduces streamflows well enough to represent the hydrologic behavior of the basin, especially for the base flow. Considering the complex geological structure of the Pecos River Basin below Red Bluff Reservoir, the results can be considered satisfactory. The model can be used for future water availability predictions in the basin considering climate change effects. / text
23

The Many Battles of Glorieta Pass: Struggles for the Integrity of a Civil War Battlefield

Hull, William Edward, 1945- 08 1900 (has links)
This study focuses on modern-day attempts to preserve the site where Union volunteers from Colorado defeated a Confederate army from Texas at the 1862 Battle of Glorieta Pass to curtail Confederate expansion westward. When construction workers in 1987 accidently uncovered remains of the war dead, a second battle of Glorieta Pass ensued. Texas and New Mexico officials quarreled over jurisdiction of the war casualties. Eventually Congress authorized the National Park Service to expand the Pecos National Park through purchase and donation of land to include the battlesite. Sources include local records, newspapers, federal and state documents, and interviews with preservation participants.

Page generated in 0.0501 seconds