Spelling suggestions: "subject:"pedestrian dynamics"" "subject:"edestrian dynamics""
1 |
Simulation for pedestrian dynamics by real-coded cellular automata (RCA)Nishinari, Katsuhiro, Kokubo, Satoshi, Yamamoto, Kazuhiro 06 1900 (has links)
No description available.
|
2 |
Hydrodynamics of polarized crowds : experiments and theory / Étude hydrodynamique des foules polarisées : expériences et théorieBain, Nicolas 16 November 2018 (has links)
Modéliser le mouvement des foules humaines est essentiel pour des situations aussi diverses que la prévention de risque dans les lieux publics, la planification d’évènements ou la création d’animations visuelles réalistes. Cependant, la difficulté de mener des expériences quantitatives limite notre compréhension de la dynamique des piétons, et le manque de mesures de référence rend impossible une comparaison poussée des modèles existants. Cette thèse tente d’augmenter notre compréhension des foules humaines par deux approches distinctes. Dans un premier temps, nous avons conduit une étude numérique et théorique pour étudier formation de lignes au sein de flux bidirectionnels d'agents motiles. Nous avons montré qu’une transition de phase critique du second ordre séparait un état mélangé d’un état constitué de lignes géantes le long desquelles se déplacent les agents visants une même direction. Cette séparation est caractéristique des systèmes actifs. Une approche hydrodynamique nous a ensuite permis de prouver que les phases mélangées sont aussi algébriquement corrélées dans la direction longitudinale. Nous avons expliqué et montré que ces fortes corrélations sont génériques de tous systèmes de flux bidirectionnels, qu’ils soient constitués de particules forcées ou de particules actives. Dans un second temps, nous avons mené une campagne expérimentale de grande envergure afin d’établir une expérience de référence des foules humaines. Nous avons pour cela choisi un système modèle, la zone d’attente de marathons. Dans ces foules de dizaines de milliers d’individus, nous avons quantitativement établi que les fluctuations de vitesse se propagent sur de grandes échelles, alors que les variations d’orientation s’évanouissent en quelques secondes. Grâce à ces mesures, nous avons construit une théorie prédictive hydrodynamique des foules polarisées. / Modelling crowd motion is central to situations as diverse as risk prevention in mass events and visual effects rendering in the motion picture industry. The difficulty to perform quantitative measurements in model experiments, and the lack of reference experimental system, have however strongly limited our ability to model and control pedestrian flows. The aim of this thesis is to strengthen our understanding of human crowds, following two distinct approaches.First, we designed a numerical model to study the lane formation process among bidirectional flows of motile particles. We first evidenced the existence of two distinct phases: one fully laned and one homogeneously mixed, separated by a critical phase transition, unique to active systems. We then showed with a hydrodynamic approach that the mixed phase is algebraically correlated in the direction of the flow. We elucidated the origin of these strong correlations and proved that they were a universal feature of any system of oppositely moving particles, active of passive.Second, we conducted a substantial experimental campaign to establish a model experiment of human crowds. For that purpose we performed systematic measurements on crowds composed of tens of thousands of road-race participants in start corrals, a geometrically simple setup. We established that speed information propagates through polarized crowds over system spanning scales, while orientational information is lost in a few seconds. Building on these observations, we laid out a hydrodynamic theory of polarized crowds and demonstrated its predictive power.
|
3 |
Moving in the dark : Mathematics of complex pedestrian flowsVeluvali, Meghashyam January 2023 (has links)
The field of mathematical modelling for pedestrian dynamics has attracted significant scientific attention, with various models proposed from perspectives such as kinetic theory, statistical mechanics, game theory and partial differential equations. Often such investigations are seen as being a part of a new branch of study in the domain of applied physics, called sociophysics. Our study proposes three models that are tailored to specific scenarios of crowd dynamics. Our research focuses on two primary issues. The first issue is centred around pedestrians navigating through a partially dark corridor that impedes visibility, requiring the calculation of the time taken for evacuation using a Markov chain model. The second issue is posed to analyse how pedestrians move through a T-shaped junction. Such a scenario is motivated by the 2022 crowd-crush disaster took place in the Itaewon district of Seoul, Korea. We propose a lattice-gas-type model that simulates pedestrians’ movement through the grid by obeying a set of rules as well as a parabolic equation with special boundary conditions. By the means of numerical simulations, we investigate a couple of evacuation scenarios by evaluating the mean velocity of pedestrians through the dark corridor, varying both the length of the obscure region and the amount of uncertainty induced by the darkness. Additionally, we propose an agent-based-modelling and cellular automata inspired model that simulates the movement of pedestrians through a T-shaped grid, varying the initial number of pedestrians. We measure the final density and time taken to reach a steady pedestrian traffic state. Finally, we propose a parabolic equation with special boundary conditions that mimic the dynamic of the pedestrian populations in a T-junction. We solve the parabolic equation using a random walk numerical scheme and compare it with a finite difference approximation. Furthermore, we prove rigorously the convergence of the random walk scheme to a corresponding finite difference scheme approximation of the solution.
|
Page generated in 0.078 seconds