• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural Geology and Geochronology of the Bernic Lake Area in the Bird River Greenstone Belt, Manitoba: Evidence for Syn-Deformational Emplacement of the Bernic Lake Pegmatite Group

Kremer, Paul January 2010 (has links)
The Bernic Lake Formation in the Bird River greenstone belt consists dominantly of mafic to felsic arc volcanic and volcaniclastic rocks, with varying amounts of mafic to felsic intrusive rocks, including the Bernic Lake pegmatite group. U-Pb geochronoligical analyses on selected samples around the Bernic Lake area, indicate that the Tanco gabbro, the Birse Lake granodiorite and the volcanic rocks of the Bernic Lake Formation are contemporaneous ca. 2724 Ma and form part of a singular volcanic and subvolcanic complex. The highly evolved, LCT-type, rare element-bearing Bernic Lake pegmatite group, including the world class Tanco pegmatite, was emplaced in the Bernic Lake Formation during a belt-scale tectonomagmatic event associated with G3 deformation between ca. 2650 and 2640 Ma. Early and rarely preserved isoclinal folding in the Bernic Lake Formation attributed to G1 deformation was followed north-south directed compression resulting in refolding and transposition of G1 structures by east-west trending upright F2 folds. Continued compression caused strain localization and south-side-up shearing along the North Bernic Lake Shear Zone (NBLSZ), which juxtaposes MORB-like basalt of the south panel to the south against arc rocks of the Bernic Lake Formation to the north. G3 deformation is characterized by a spaced S3 fracture cleavage that overprints the penetrative S2 fabric, and dextral reactivation of the NBLSZ. Pegmatitic melt ascended from depth along the reactivated NBLSZ during this time and was emplaced both within the shear zone and within rock units adjacent to it. The shapes and orientations of the pegmatites are controlled in part by the rheology of the host rocks into which they were emplaced. Rheologically competent lithologies responded to G3 strain by brittle fracture and the pegmatites occurring therein are flat and tabular; rheologically incompetent lithologies responded to G3 strain by ductile-brittle deformation and the pegmatites therein are irregular, folded, and/or boudinaged. The contrasting styles suggest that the pegmatites intruded while the rocks of the Bernic Lake Formation were at or near the brittle-ductile transition.
2

Structural Geology and Geochronology of the Bernic Lake Area in the Bird River Greenstone Belt, Manitoba: Evidence for Syn-Deformational Emplacement of the Bernic Lake Pegmatite Group

Kremer, Paul January 2010 (has links)
The Bernic Lake Formation in the Bird River greenstone belt consists dominantly of mafic to felsic arc volcanic and volcaniclastic rocks, with varying amounts of mafic to felsic intrusive rocks, including the Bernic Lake pegmatite group. U-Pb geochronoligical analyses on selected samples around the Bernic Lake area, indicate that the Tanco gabbro, the Birse Lake granodiorite and the volcanic rocks of the Bernic Lake Formation are contemporaneous ca. 2724 Ma and form part of a singular volcanic and subvolcanic complex. The highly evolved, LCT-type, rare element-bearing Bernic Lake pegmatite group, including the world class Tanco pegmatite, was emplaced in the Bernic Lake Formation during a belt-scale tectonomagmatic event associated with G3 deformation between ca. 2650 and 2640 Ma. Early and rarely preserved isoclinal folding in the Bernic Lake Formation attributed to G1 deformation was followed north-south directed compression resulting in refolding and transposition of G1 structures by east-west trending upright F2 folds. Continued compression caused strain localization and south-side-up shearing along the North Bernic Lake Shear Zone (NBLSZ), which juxtaposes MORB-like basalt of the south panel to the south against arc rocks of the Bernic Lake Formation to the north. G3 deformation is characterized by a spaced S3 fracture cleavage that overprints the penetrative S2 fabric, and dextral reactivation of the NBLSZ. Pegmatitic melt ascended from depth along the reactivated NBLSZ during this time and was emplaced both within the shear zone and within rock units adjacent to it. The shapes and orientations of the pegmatites are controlled in part by the rheology of the host rocks into which they were emplaced. Rheologically competent lithologies responded to G3 strain by brittle fracture and the pegmatites occurring therein are flat and tabular; rheologically incompetent lithologies responded to G3 strain by ductile-brittle deformation and the pegmatites therein are irregular, folded, and/or boudinaged. The contrasting styles suggest that the pegmatites intruded while the rocks of the Bernic Lake Formation were at or near the brittle-ductile transition.

Page generated in 0.0637 seconds