Spelling suggestions: "subject:"cpeptide mass fingerprinting"" "subject:"cpeptide mass fingerprintings""
1 |
Novel Computational Methods for Mass Spectrometry based Protein IdentificationJain, Rachana 12 April 2010 (has links)
No description available.
|
2 |
Characterizing Interactions between Chromophores in Synthetic and Natural Macromolecular Films via MALDI-TOF, IBF and Dielectric AnalyzerJain, Parul 01 January 2013 (has links)
With the emergence of Matrix Assisted Laser Desorption/Ionization-Time-of-flight as a tool for diagnosis of diseases via proteomics, there is an increasing need for greater sensitivity. Analysis of peptides by MALDI-TOF-MS is affected by sample formulation and spotting onto a MALDI target. This dissertation investigates a novel MALDI sample preparation technique, Induction Based Fluidics (IBF), for depositing precise volumes (pL to nL) of samples onto the target. We have seen that while using IBF, the induced electric field accompanying deposition enhances matrix crystallization yielding smaller crystals with more homogeneity, as compared to conventional manual micropipette (MP) depositions. An investigation of the signal-to-noise (S/N) for IBF deposition of tryptic digested Bovine Serum Albumin (BSA) showed a significant improvement in the signal-to-noise ratio for 0.5 and 0.25 pmol/µL BSA sample compared to equivalent MP depositions. The S/N enhancement for IBF and MP depositions of BSA were studied using à-cyano-4-hydroycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) matrices, and CHCA showed better results than DHB .
The exciting results obtained by IBF prompted us to probe sample morphology more fully and to relate morphology to the detections level and hopefully, to increase the utility of MALDI-TOF-MS for detection of a larger range of peptides. Morphology results were correlated to sensitivity limits using both dispensing techniques. Because of dissimilar rates of evaporation, different or uneven deposition thickness, or crystal lattice morphology, discontinuous crystallization patterns were observed for MP depositions. However, IBF deposited samples occupied less planar area with uniform distribution of crystals, thereby reducing sample crystal heterogeneity and laborious hunt for a "sweet" or "hot" spot to produce high quality spectra. The application of IBF was extended to the tryptic digested BSA protein using peptide mass fingerprinting. IBF deposition resulted in a larger number of detectable peptides as well as higher sequence coverage as compared to equivalent MP depositions.
In last few decades, advanced research and potential applications in the field of microelectronics have spurred interest in the development of reticulated doped polymer films. Bis (ethylenedioxy) tetrathiafulvalene (BEDO-TTF)/Polycarbonate (PC) films were synthesized and characterized for use in hand-held real time explosives sensors, capable of detecting nitro-based compounds (nitroaromatics, nitoamines and nitroesters), which are the main components of Improvised Explosive Devices or IEDs. Reticulated doped polymer films were prepared by exposing solid solutions of BEDO-TTF in PC to iodine to form conductive charge transfer complexes. The resulting films exhibited room temperature conductivities ranging from 6.33-90.4*10-5 S cm-1. The colored iodine complexes in the film were reduced by cyclic voltammetry yielding conductive, colorless, transparent films. Dielectric analysis (DEA) was used to probe relaxations in neat PC and BEDO-TTF/PC showed that BEDO-TTF plasticized the PC and decreased the glass transition temperature. Two secondary relaxations appeared in PC films, whereas the transitions merged in the doped film. DEA also revealed conductivity relaxations above 180°C, which were characterized by the electric modulus formalism and showed that BEDO-TTF increased the alternating current, (AC) conductivity in PC.
|
3 |
Surfactant-Aided Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (SA-MALDI MS)Tummala, Manorama January 2004 (has links)
No description available.
|
4 |
Establishment of a two-dimensional electrophoresis map of human mitochondrial proteinsXie, Jing 15 December 2003 (has links)
Mitochondriopathien sind Multisystemerkrankungen die durch verschiedene Defekte in den Energie (ATP) produzierenden Stoffwechselwegen der Mitochondrien verursacht sind. Will man Mitochondriopathien auf molekularer Ebene diagnostizieren, stößt man auf folgende Schwierigkeiten: (A) Ungefähr 1000 Gene sind an der Biogenese des Mitochondriums beteiligt. Die Dysfunktion jedes einzelnen dieser Gene kann potentiell zur Mitochondriopathie führen. (B) Mitochondriale Proteine werden durch zwei Genome, durch die mitochondriale und durch die nukleäre DNA kodiert. (C) Die klinischen Symptome der Patienten weisen selten auf die molekulare Diagnose, da der Phänotyp oft nur auf einem sekundären Energiemangel beruht. In der Regel besteht keine sichere Genotyp-Phänotyp-Relation. Mit den gegenwärtig zur Verfügung stehenden Methoden lassen sich bei nur 20% der Patienten Mutationen finden. Wir wollten daher eine neue Screening-Methode entwickeln, mit deren Hilfe wir hoffen, die Aufspürungsrate für mitochondriale Mutationen zu erhöhen. Die Gesamtheit der Proteine einer Organelle oder einer ganzen Zelle (ihr "Proteom") stellt das Verbindungsglied zwischen Geno- und Phänotyp dar. Aus diesem Grunde wollten wir das mitochondriale Proteom von gesunden Kontrollpersonen und von Patienten mit Mitochondriopathien untersuchen. Protein-Muster, die zwischen diesen beiden Gruppen abweichen, könnten die Aufmerksamkeit auf Gene und Proteine richten, die an der Entstehung des Krankheits-Phänotyps beteiligt sind. Um solch eine vergleichende Studie durchzuführen, muß zunächst eine Referenzkarte des normalen mitochondrialen Proteoms erstellt werden. In meinem Dissertationsprojekt habe ich diese grundlegende Arbeit durchgeführt und zahlreiche Proteine auf der Proteomkarte menschlicher Mitochondrien identifiziert, die aus Epstein-Barr-Virus-transformierten lymphoblastoiden Zellen gewonnen worden waren. Ich wählte diese Zellsorte als Untersuchungsmaterial, da sie nicht nur einfach von Patienten gewonnen werden, sondern auch potentiell permanent wachsen kann. Dies erlaubt die Züchtung einer hohen Zellzahl ohne übermäßigen Aufwand. Ich optimierte ein Protokoll zur Zentrifugation in einem hybriden Gradienten, mit dem genug gereinigte Mitochondrien aus 108 Zellen gewonnen werden konnten. Für die Referenzkarte benutzte ich die lymphoblastoide Zellline einer gesunden Kontrollperson. Die Methode der Wahl zur Proteinidentifikation in Proteom-Projekten ist die zweidimensionale Proteinelektrophorese gekoppelt mit der MALDI-TOF-Massenspektrometrie. Ich entdeckte mehr als 400 Punkte in meinem silbergefärbten zweidimensionalen Gel und analysierte die 141 stärksten Punkte nach in-gel Trypsin-Verdau und anschließender MALDI-TOF-Massenspektrometrie in einem Verfahren, das als "Peptide Mass Fingerprinting" (Peptidmassen-Fingerabdruck) bezeichnet wird. Mit Hilfe entsprechender Datenbanken konnte ich schließlich 115 verschiedene Proteinpunkte (entsprechen 95 verschiedenen Proteinen) identifizieren. 90 dieser Punkte (entsprechend 74 verschiedenen Proteinen) waren sicher mitochondrialer Herkunft und sind Komponenten aller wesentlichen im Mitochondrium lokalisierten Stoffwechselwege. 16 der 74 identifizierten mitochondrialen Proteine gehören zur Atmungskette. Obwohl 18 mitochondriale Proteine in der Datenbank SWISS-PROT als "Membran-assoziiert" annotiert sind, identifizierte ich nur vier Proteine mit sicheren Transmembrandomänen. Ich entdeckte keine der 13 durch die mitochondriale DNA kodierten Proteine, die alle stark hydrophobe Membranproteine sind. Andere Forscher sind bei dem Versuch diese Proteine zu identifizieren, auf die gleichen Schwierigkeiten gestoßen. Mit meiner Dissertationsarbeit habe ich unsere eigene Datenbank und Referenzkarte des mitochondrialen Proteoms lyphoblastoider Zellen erstellt. Diese Daten ermöglichen nun die Analyse des mitochondrialen Proteoms von Patienten. Meine weiteren Untersuchungen auf diesem Gebiet werden sich nun auf die genetische Variabilität des Proteoms gesunder Kontrollpersonen und auf das Proteom der Patienten mit Mitochondriopathien beziehen. / Mitochondrial disorders are multisystem diseases that can be caused by any defect in the energy (ATP) generating pathways in the mitochondria. The difficulty in diagnosing mitochondrial diseases on the molecular level arises from several obstacles: (A) About 1000 genes are involved in the biogenesis of mitochondria. The dysfunction of each of them may potentially cause mitochondriopathy. (B) The mitochondrial proteins are encoded by two genomes: the mitochondrial DNA and the nuclear DNA. (C) The clinical symptoms of the patients rarely suggest a molecular diagnosis since in most cases, the phenotype is a secondary phenomenon to energy depletion. Generally there is no genotype-phenotype relation. Based on current diagnostic methods in only 20% of the patients a mutation can be found. We therefore wanted to develop a new screening method by which we hope to increase the identification rate. Since the numerous proteins of an organelle or of a whole cell (its "proteome") connect the genotype with the phenotype, we set out to study the proteome of the mitochondrion in healthy individuals and in patients with mitochondrial diseases. Deviating protein patterns between the two individuals could direct the attention to disease-specific proteins and genes, which might be involved in the expression of a disease-phenotype. In order to perform such a comparison I first had to establish a normal reference map. In my dissertation project I performed this basic task and identified numerous mitochondrial proteins on the proteome-map of human mitochondria, which had been extracted from lymphoblastoid cells. I selected Epstein-Barr-Virus-transformed lymphoblastoid cells as samples not only because they are easily obtained from patients, but also due to their potential permanent growth. This approach allows the cultivation of high cell numbers without excessive expenditure of work and cost. I optimized a protocol for hybrid gradient centrifugation, by which enough mitochondria can be purified from 108 cells. I used a cultured lymphoblastoid cell line from a normal control patient and isolated mitochondria from it by using hybrid gradient centrifugation. In proteomics the combination of the high-resolution two-dimensional electrophoresis and matrix assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) is currently the method of choice for protein identification. I detected more than 400 spots in a silver-stained two-dimensional gel. I analyzed the 141 strongest spots of it by trypsin in gel digestion and subsequent MALDI-TOF mass spectrometry in a process termed "peptide mass fingerprinting". After database search, I finally identified 115 protein spots (corresponding to 95 different proteins), 90 of which (corresponding to 74 different proteins) are of confirmed mitochondrial origin. These identified proteins are components of the main biological pathways located in the mitochondrion. 16 of the 74 identified mitochondrial proteins belong to the respiratory chain. Despite the fact that 18 mitochondrial proteins are annotated in the SWISS-PROT-database as "membrane associated proteins", only four of them have clear transmembrane domains. None of the proteins encoded by the mitochondrial DNA could be detected. All of them are hydrophobic membrane proteins. A similar difficulty in resolving these proteins was encountered by other research groups. With my dissertation I established our own database and reference map of the mitochondrial proteome of lymphoblastoid cells. These data will facilitate the analysis of the mitochondrial proteome in patients. My future research based on this dissertation will mainly focus on the genetic variation of the proteome of healthy individuals and on patients with mitochondrial diseases.
|
5 |
Identification and Characterization of Peptides and Proteins using Fourier Transform Ion Cyclotron Resonance Mass SpectrometryPalmblad, Magnus January 2002 (has links)
Mass spectrometry has in recent years been established as the standard method for protein identification and characterization in proteomics with excellent intrinsic sensitivity and specificity. Fourier transform ion cyclotron resonance is the mass spectrometric technique that provides the highest resolving power and mass accuracy, increasing the amount of information that can be obtained from complex samples. This thesis concerns how useful information on proteins of interest can be extracted from mass spectrometric data on different levels of protein structure and how to obtain this data experimentally. It was shown that it is possible to analyze complex mixtures of protein tryptic digests by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and identify abundant proteins by peptide mass fingerprinting. Coupling on-line methods such as liquid chromatography and capillary electrophoresis increased the number of proteins that could be identified in human body fluids. Protein identification was also improved by novel statistical methods utilizing prediction of chromatographic behavior and the non-randomness of enzymatic digestion. To identify proteins by short sequence tags, electron capture dissociation was implemented, improved and finally coupled on-line to liquid chromatography for the first time. The combined techniques can be used to sequence large proteins de novo or to localize and characterize any labile post-translational modification. New computer algorithms for the automated analysis of isotope exchange mass spectra were developed to facilitate the study of protein structural dynamics. The non-covalent interaction between HIV-inhibitory peptides and the oligomerization of amyloid β-peptides were investigated, reporting several new findings with possible relevance for development of anti-HIV drug therapies and understanding of fundamental mechanisms in Alzheimer’s disease.
|
Page generated in 0.1286 seconds