• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régulations immunitaires et cellulaires impliquées dans le maintien et le contrôle des bactéries endosymbiotiques du charançon des céréales du genre Sitophilus spp. / Maintenance and control of the endosymbionts of the cereal weevil Sitophilus spp. through immunity and cell processes

Masson, Florent 30 November 2015 (has links)
Plusieurs insectes se développant dans des milieux nutritionnellement déficients vivent en symbiose durable avec des bactéries intracellulaires (endosymbiotes) qui complémentent leur alimentation et améliorent leur pouvoir adaptatif. Alors que ces associations ont été largement étudiées sur les plans physiologiques et évolutifs, peu de travaux se sont consacrés à l’étude des mécanismes impliqués dans la tolérance et le contrôle des endosymbiotes par l’hôte. L’objectif de cette thèse est d’étudier, chez les charançons des céréales du genre Sitophilus, les particularités moléculaires et immunitaires du bactériome, un organe que l’insecte développe pour héberger les symbiotes et les isoler de sa réponse immunitaire systémique. Le bactériome du charançon exprime une réponse immunitaire modulée : des études transcriptomiques ont montré que les effecteurs de l’immunité sont peu exprimés dans cet organe, à l’exception d’un gène codant un peptide antimicrobien, la coléoptéricine A. Cette dernière interagit avec les endosymbiotes et participe à leur confinement intracellulaire. Dans une première partie, j’ai montré avec une approche d’interférence à l’ARN que l’expression du gène colA serait contrôlée par un système original qui impliquerait les gènes relish et tollip. Cette régulation « interne » au bactériome semble assurer le maintien des endosymbiotes et l’homéostasie de l’organe. Afin de comprendre comment le bactériome répond à une infection par les bactéries exogènes, j’ai suivi par RT-qPCR l’expression de gènes effecteurs de l’immunité dans le bactériome après injection systémique de bactéries à Gram positif ou négatif. Ceci a mis en évidence une réponse « externe », induite en cas d’infection, et qui aurait un rôle de protection des endosymbiotes contre les bactéries exogènes. Enfin, je me suis consacré à l’étude des changements de régulation accompagnant le passage du stade larvaire au stade adulte, marqué par une symbiose très dynamique. Le nombre d’endosymbiotes augmente fortement pendant les premiers jours de vie imaginale, puis diminue jusqu’à leur élimination complète par recyclage autophagique. Une analyse RNAseq a permis d’identifier les voies de signalisation dont l’activité accompagne cette dynamique. Une approche de RT-qPCR a également montré que l’immunité du bactériome est maintenue à un faible niveau d’activation pendant tout le processus de recyclage. Ce travail montre qu’au cours de leur évolution, les insectes ont sélectionné plusieurs stratégies pour assurer le maintien et l’ajustement de leur charge endosymbiotique en fonction de leurs besoins physiologiques : une signalisation immunitaire assurerait le confinement intracellulaire des endosymbiotes, et un ensemble de processus cellulaires incluant l’apoptose et l’autophagie semble être en associé aux voies métaboliques pour assurer le contrôle de la dynamique bactérienne et garantir le compromis bénéfice/coût de la symbiose. / Many insect species living on nutritionally unbalanced media depend on intracellular mutualistic bacteria, called obligatory endosymbionts, for their development and reproduction. Endosymbionts are housed in specialized host cells called bacteriocytes, that group together to form the bacteriome organ. Although such associations have been widely investigated on a physiological and evolutionary point of view, little is known about the mechanisms involved in the tolerance and the control of endosymbionts by the host. This work aims at deciphering the molecular and immune specificities of the bacteriome using the model system Sitophilus oryzae, the cereal weevil, and its obligate endosymbiont Sodalis pierantonius. The weevil bacteriome expresses a modulated immune response: transcriptomic studies showed that immune effector genes were lowly expressed despite the massive bacterial presence, with the exception of colA, a gene encoding for Coleoptericin A, an antimicrobial peptide. Coleoptericin A interacts with endosymbionts and participates in their intracellular seclusion. In a first chapter, I used RNA interference to demonstrate that colA gene expression may be controlled by an original system involving the genes relish and tollip. This “internal” regulation for endosymbiont control seems to maintain bacteriome homeostasis. In a second chapter, in order to understand how the bacteriome responds to an infection by exogenous bacteria, I followed up by RT-qPCR the expression of immune effector genes in the bacteriome after injection of Gram positive and Gram negative bacteria. This highlighted an “external” immune response, inducible upon infections, which may enable endosymbiont protection against exogenous intruders. In a third and last chapter, I focused on the regulation changes that accompany the switch from the larval stage to the imaginal stage, the latter being characterized by a very dynamic symbiosis. Endosymbiont load drastically increases during the first days of imaginal life, then rapidly decreases until complete elimination of the bacteria by autophagic recycling. RNAseq analysis allowed the identification of signaling pathways linked to this dynamic. A complementary RT-qPCR approach also showed that bacteriome immunity was laid low during the whole recycling process. This work shows that several strategies have been selected during host-symbiont coevolution to ensure the maintenance of the endosymbionts and the adjustment of their population depending on the insects physiological needs: immunity allows the intracellular seclusion in the bacteriocytes, and cell processes including autophagy and apoptosis are associated to metabolic pathways to control the endosymbiotic dynamics and secure the cost and benefit trade-off of symbiosis.

Page generated in 0.0643 seconds