• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploiting Dynamic Covalent Binding for Strain-Specific Bacterial Recognition:

McCarthy, Kelly A. January 2018 (has links)
Thesis advisor: Eranthie Weerapana / Antibiotic resistance of bacterial pathogens poses an increasing threat to the wellbeing of our society and urgently calls for new strategies for infection diagnosis and antibiotic discovery. The overuse and misuse of broad-spectrum antibiotics has contributed to the antibiotic resistance crisis. Additionally, treatment of infections with broad-spectrum antibiotics can cause disruption to the host gut microbiome. The development of narrow-spectrum antibiotics would be ideal to avoid unnecessary cultivation of antibiotic resistance and damage to the human microbiota. Bacteria present many mechanisms of resistance, including modulating their cell surface with amine functionalities. In an age where infections are no longer responding to typical antibiotic treatments, novel drugs that target the characteristics of antibiotic resistance would be beneficial to remedy these defiant infections. Herein, we describe the utility of iminoboronate formation to target the amine- presenting surface modifications on bacteria, particularly those that display antibiotic resistance. Specifically, multiple 2-acetylphenylboronic acid warheads were incorporated into a peptide scaffold to develop potent peptide probes of bacterial cells. Further, by engineering a phage display library presenting the 2-acetylphenylboronic acid moieties, we were able to perform peptide library screens against live bacterial cells to develop reversible covalent peptide probes of target strains of bacteria. These peptide probes, which were developed for clinical strains of Staphylococcus aureus and Acinetobacter baumannii which display resistance, can label the target bacterium at submicromolar concentrations in a highly specific manner and in complex biological milieu. We further show that the identified peptide probes can be readily converted to bactericidal agents that deliver generic toxins to kill the targeted bacterial strain with high specificity. It is conceivable that this phage display platform is applicable to a wide array of bacterial strains, paving the way to facile diagnosis and development of strain-specific antibiotics. Furthermore, it is intriguing to speculate that even higher potency binding could be accomplished with better designed phage libraries with dynamic covalent warheads. This work is currently underway in our laboratory. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Generating Peptide Probes against Cancer-related Peptide Recognition Domains using Phage Display

Hooda, Yogesh 20 November 2012 (has links)
Peptide recognition domains (PRD) bind to short linear motifs on their biological partners and are found in several cellular pathways including those found to be critical in tumorigenesis. In this study, I aimed to generate peptide probes against PRDs present on proteins involved in ovarian cancer. Using bioinformatics, I identified 66 potential PRDs present on these proteins. I then used peptide phage display to successfully generate peptides against 27 of the 66 domains. To validate my results, I performed an extensive literature review and structural analysis. For several cases, the phage-display derived binding preferences are similar to previously reported studies. However, for a subset of domains, I identified non-canonical binding preferences that have not been reported previously in literature. The binding preferences obtained in this study can be used to design intracellular probes for studying the role of these PRDs in biological pathways important in ovarian cancer.
3

Generating Peptide Probes against Cancer-related Peptide Recognition Domains using Phage Display

Hooda, Yogesh 20 November 2012 (has links)
Peptide recognition domains (PRD) bind to short linear motifs on their biological partners and are found in several cellular pathways including those found to be critical in tumorigenesis. In this study, I aimed to generate peptide probes against PRDs present on proteins involved in ovarian cancer. Using bioinformatics, I identified 66 potential PRDs present on these proteins. I then used peptide phage display to successfully generate peptides against 27 of the 66 domains. To validate my results, I performed an extensive literature review and structural analysis. For several cases, the phage-display derived binding preferences are similar to previously reported studies. However, for a subset of domains, I identified non-canonical binding preferences that have not been reported previously in literature. The binding preferences obtained in this study can be used to design intracellular probes for studying the role of these PRDs in biological pathways important in ovarian cancer.

Page generated in 0.0673 seconds