• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cell-surface glycan-lectin interactions for biomedical applications

Unknown Date (has links)
Carbohydrate recognition is one of the most sophisticated recognition processes in biological systems, mediating many important aspects of cell-cell recognition, such as inflammation, cell differentiation, and metastasis. Consequently, lectin-glycan interactions have been intensively studied in order to mimic their actions for potential bioanalytical and biomedical applications. Galectins, a class of ß-galactoside-specific animal lectins, have been strongly implicated in inflammation and cancer. Galectin-3 is involved in carbohydrate-mediated metastatic cell heterotypic and homotypic adhesion via interaction with Thomsen-Friedenreich (TF) antigen on cancer-associated MUC1. However, the precise mechanism by which galectin-3 recognizes TF antigen is poorly understood. Our thermodynamic studies have shown that the presentation of the carbohydrate ligand by MUC1-based peptide scaffolds can have a major impact on recognition, and may facilitate the design of more potent and specific galectin-3 inhibitors that can be used as novel chemical tools in dissecting the precise role of galectin-3 in cancer and inflammatory diseases. Another lectin, odorranalectin (OL), has been recently identified from Odorrana grahami skin secretions as the smallest cyclic peptide lectin, has a particular selectivity for L-fucose and very low toxicity and immunogenicity, rendering OL an excellent candidate for drug delivery to targeted sites, such as: (1) tumor-associated fucosylated antigens implicated in the pathogenesis of several cancers, for overcoming the nonspecificity of most anticancer agents; (2) the olfactory epithelium of nasal mucosa for enhanced delivery of peptide-based drugs to the brain. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015.

Page generated in 0.0768 seconds