Spelling suggestions: "subject:"aperception multicapteurs"" "subject:"aperception multicapteur""
1 |
Tolérance aux fautes pour la perception multi-capteurs : application à la localisation d'un véhicule intelligent / Fault tolerance for multi-sensor perception : application to the localization of an intelligent vehicleBader, Kaci 05 December 2014 (has links)
La perception est une entrée fondamentale des systèmes robotiques, en particulier pour la localisation, la navigation et l'interaction avec l'environnement. Or les données perçues par les systèmes robotiques sont souvent complexes et sujettes à des imprécisions importantes. Pour remédier à ces problèmes, l'approche multi-capteurs utilise soit plusieurs capteurs de même type pour exploiter leur redondance, soit des capteurs de types différents pour exploiter leur complémentarité afin de réduire les imprécisions et les incertitudes sur les capteurs. La validation de cette approche de fusion de données pose deux problèmes majeurs.Tout d'abord, le comportement des algorithmes de fusion est difficile à prédire,ce qui les rend difficilement vérifiables par des approches formelles. De plus, l'environnement ouvert des systèmes robotiques engendre un contexte d'exécution très large, ce qui rend les tests difficiles et coûteux. L'objet de ces travaux de thèse est de proposer une alternative à la validation en mettant en place des mécanismes de tolérance aux fautes : puisqu'il est difficile d'éliminer toutes les fautes du système de perception, on va chercher à limiter leurs impacts sur son fonctionnement. Nous avons étudié la tolérance aux fautes intrinsèquement permise par la fusion de données en analysant formellement les algorithmes de fusion de données, et nous avons proposé des mécanismes de détection et de rétablissement adaptés à la perception multi-capteurs. Nous avons ensuite implémenté les mécanismes proposés pour une application de localisation de véhicules en utilisant la fusion de données par filtrage de Kalman. Nous avons finalement évalué les mécanismes proposés en utilisant le rejeu de données réelles et la technique d'injection de fautes, et démontré leur efficacité face à des fautes matérielles et logicielles. / Perception is a fundamental input for robotic systems, particularly for positioning, navigation and interaction with the environment. But the data perceived by these systems are often complex and subject to significant imprecision. To overcome these problems, the multi-sensor approach uses either multiple sensors of the same type to exploit their redundancy or sensors of different types for exploiting their complementarity to reduce the sensors inaccuracies and uncertainties. The validation of the data fusion approach raises two major problems. First, the behavior of fusion algorithms is difficult to predict, which makes them difficult to verify by formal approaches. In addition, the open environment of robotic systems generates a very large execution context, which makes the tests difficult and costly. The purpose of this work is to propose an alternative to validation by developing fault tolerance mechanisms : since it is difficult to eliminate all the errors of the perceptual system, We will try to limit impact in their operation. We studied the inherently fault tolerance allowed by data fusion by formally analyzing the data fusion algorithms, and we have proposed detection and recovery mechanisms suitable for multi-sensor perception, we implemented the proposed mechanisms on vehicle localization application using Kalman filltering data fusion. We evaluated the proposed mechanims using the real data replay and fault injection technique.
|
2 |
Méthodes conjointes de détection et suivi basé-modèle de cibles distribuées par filtrage non-linéaire dans les données lidar à balayage / Joint detection and model-based tracking methods of extended targets in scanning laser rangefinder data using non-linear filtering techniquesFortin, Benoît 22 November 2013 (has links)
Dans les systèmes de perception multicapteurs, un point central concerne le suivi d'objets multiples. Dans mes travaux de thèse, le capteur principal est un télémètre laser à balayage qui perçoit des cibles étendues. Le problème desuivi multi-objets se décompose généralement en plusieurs étapes (détection, association et suivi) réalisées de manière séquentielle ou conjointe. Mes travaux ont permis de proposer des alternatives à ces méthodes en adoptant une approche "track-before-detect" sur cibles distribuées qui permet d'éviter la succession des traitements en proposant un cadre global de résolution de ce problème d'estimation. Dans une première partie, nous proposons une méthode de détection travaillant directement en coordonnées naturelles (polaires) qui exploite les propriétés d'invariance géométrique des objets suivis. Cette solution est ensuite intégrée dans le cadre des approches JPDA et PHD de suivi multicibles résolues grâce aux méthodes de Monte-Carlo séquentielles. La seconde partie du manuscrit vise à s'affranchir du détecteur pour proposer une méthode dans laquelle le modèle d'objet est directement intégré au processus de suivi. C'est sur ce point clé que les avancées ont été les plus significatives permettant d'aboutir à une méthode conjointe de détection et de suivi. Un processus d'agrégation a été développé afin de permettre une formalisation des données qui évite tout prétraitement sous-optimal. Nous avons finalement proposé un formalisme général pour les systèmes multicapteurs (multilidar, centrale inertielle, GPS). D'un point de vue applicatif, ces travaux ont été validés dans le domaine du suivi de véhicules pour les systèmes d'aide à la conduite. / In multi-sensor perception systems, an active topic concerns the multiple object tracking methodes. In this work, the main sensor is a scanning laser rangefinder perceiving extended targets. Tracking methods are generally composed of a three-step scheme (detection, association and tracking) which is jointly or sequentially implemented. This work proposes alternative solutions by considering a track-before-detect approach on extended targets. It avoids the classic procedures by proposing a global framework to solve this estimation problem. Firstly, we propose a detection method dealing with measurements in natural coordinates (polar) which is founded on geometrical invariance properties of the tracked objects. This solution is then integrated in the JPDA and PHD multi-target tracking frameworks solved with the sequential Monte-Carlo methods. The second part of this thesis aims at avoiding the detection step to propose an approach where the object model is directly embedded in the tracking process. This lets to build a novel joint detection and tracking approach. An aggregation process was developed to construct a measurement modeling avoiding any suboptimal preprocessing. We finally proposed a general framework for multi-sensor systems ( multiple lidar, inertial sensor, GPS). Theses methods were applied in the area of multiple vehicle tracking for the Advanced Driver Assistance Systems.
|
3 |
Méthodes conjointes de détection et suivi basé-modèle de cibles distribuées par filtrage non-linéaire dans les données lidar à balayageFortin, Benoît 22 November 2013 (has links) (PDF)
Dans les systèmes de perception multicapteurs, un point central concerne le suivi d'objets multiples. Dans mes travaux de thèse, le capteur principal est un télémètre laser à balayage qui perçoit des cibles étendues. Le problème desuivi multi-objets se décompose généralement en plusieurs étapes (détection, association et suivi) réalisées de manière séquentielle ou conjointe. Mes travaux ont permis de proposer des alternatives à ces méthodes en adoptant une approche "track-before-detect" sur cibles distribuées qui permet d'éviter la succession des traitements en proposant un cadre global de résolution de ce problème d'estimation. Dans une première partie, nous proposons une méthode de détection travaillant directement en coordonnées naturelles (polaires) qui exploite les propriétés d'invariance géométrique des objets suivis. Cette solution est ensuite intégrée dans le cadre des approches JPDA et PHD de suivi multicibles résolues grâce aux méthodes de Monte-Carlo séquentielles. La seconde partie du manuscrit vise à s'affranchir du détecteur pour proposer une méthode dans laquelle le modèle d'objet est directement intégré au processus de suivi. C'est sur ce point clé que les avancées ont été les plus significatives permettant d'aboutir à une méthode conjointe de détection et de suivi. Un processus d'agrégation a été développé afin de permettre une formalisation des données qui évite tout prétraitement sous-optimal. Nous avons finalement proposé un formalisme général pour les systèmes multicapteurs (multilidar, centrale inertielle, GPS). D'un point de vue applicatif, ces travaux ont été validés dans le domaine du suivi de véhicules pour les systèmes d'aide à la conduite.
|
Page generated in 0.0732 seconds